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1. INTRODUCTION
1.0 OBJECTIVES OF REPORT

The main objectives of this report are:

(1) provide the theoretical and modeling background used in a

two-dimensional model of heat and soil-water flow,

coupled by soil-water freezing and thawing (FROST2X series).

(2) present the major modeling assumptions used in the com-

puter program, and the various components of the program

in order to aid the user in the use of the model.

(3) present the necessary parameters and data requirements

used in the computer model.

(4) discuss the computer model output product, and methods

to interpret the results.

(5) present the data input sequence to the computer model.

1.1 REPORT ORGANIZATION

This report is organized into five chapters and one appendix.

CHAPTER 1. Provides an introduction to the report.

CHAPTER 2. Develops the Nodal Domain Integration (NDI) model

of tw-dimensional soil-water flow in saturated

and unsaturated soils.

CHAPTER 3. Develops the NDI model for heat flow in three

dimensions. The third dimension is included

in this NDI development (an NDI analog for

radial coordinates is presented in Appendix A)

in order to provide for the extension of the

phase change model to other coordinate systems.
.0
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CHAPTER 4. Develops the two-dimensional soil-water phase

change model used to couple the heat and soil-

water flow during soil-water freezing and thawing.

CHAPTER 5. Presents a summary of the two-dimensional freezing/

thawing model and the modeling input-output

characteristics. Provides documentation to the

computer program input requirements.

APPENDIX Expands upon the heat flow modeling approach

developed in chapter 3 to radial coordinates.

The theory developed in the appendix applies to

both heat and soil-water flow in the selection of

mass-lumping factors for use in NDI domain models.

1.2 COMPUTER PROGRAM SOURCE CODE

This report presents documentation for the FROST2B version of the

FROST2X series of two-dimensional phase change models. Also provided in

this report is the documentation for the program PROTO0 which provides a

user-friendly data input capability for subsequent use by program FROST2B.

Both computer programs are written in FORTRAN IV and can be used on

most mini-computer class computers.

Computer code for the FROST2B and PROTOO can be obtained from the U.S.

Army Corps of Engineers, Cold Regions and Research Laboratory (CRREL).

1.3 REPORT AUTHORIZATION ",

This report was prepared under the direction of Dr. Richard L. Berg

and Mr. Francis Sayles of CRREL, Hanover, New Hampshire.
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2. UNIFIED NUMERICAL MODEL OF TWO-DIMENSIONAL
SOIL-WATER FLOW

2.0 INTRODUCTION

Numeric approximation of two-dimensional non-linear partial differential

equations such as occur in the theory of unsaturated ground water flow is

generally limited to numeric solution by the finite difference or finite

element methods. Finite difference approximations, such as described by

Spalding (1972) for a specified control volume, can be determined for

rectangular and also for irregular two-dimensional domains. Finite element

methods, such as variational principle applications and weighted residuals,

can also be applied to irregular two-dimensional domains. Both methods

determine numerical algorithms which are often compared to each other for

numerical "efficiency" or other descriptions of superiority (Hayhoe, 1978).

Recently, Hromadka and Guymon (1982a,b) have developed a new numerical

approach called the nodal domain integration method which has been applied

to one and two-dimensional linear and non-linear problems for irregular

rectangular domains. From this numerical approach, the finite difference

and finite element (Galerkin) methods are "unified" into a single numerical

statement.

In this chapter the nodal domain integration method is applied to the

two-dimensional triangular finite element. As special cases, the finite

element and finite difference numerical analogs are determined by the

appropriate specification of a single parameter in the resulting nodal domain

integration numerical statement. Thus, all three numerical approaches are

unified by one numerical statement similar to the usual finite element matrix

system.

The purpose of this effort is two-fold. The first objective is to pre-

sent a basic description of the nodal domain integration procedure as applied

to the class of partial differential equations generally encountered in the

3



theory of unsaturated groundwater flow. Detailed mathematical derivations

of this numerical approach are contained in the literature (Hromadka and

Guymon, 1980a,bc) and will not be repeated here. The theoretical

foundations of this numerical method are based on the well-known subdomain

technique of the finite element weighted residuals approach.

The second objective is to present a unified numerical statement which

represents the finite element Galerkin statement, finite difference inte-

grated control volume statement, and the nodal domain integration statement

(for a linear shape function distribution of the state variable) by the

specification of a single constant parameter in the resulting triangle element

matrix system.

A secondary objective is to briefly discuss the application of the

nodal domain integration triangle element statement to reducing computer

memory requirements by the technique of approximating a higher order or more

complex family of triangle (or global) shape functions by a linear shape

function approximation. A detailed mathematical description of this linear 4
shape function approximation technique is given for the one-dimensional A

case in a previous work (Hromadka and Guymon, 1982a and will not be K
repeated here.

The main purpose of this chapter is to develop a generalized unified

triangle element matrix system which can be used in computer programming

efforts. Consequently, a single computer program can be developed which

essentially represents the finite difference, finite element (Galerkin), and

nodal domain incegration numerical approaches. This work does not recommend

one numerical approach, (although for the problems tested, the nodal domain

integration scheme produced better levels of accuracy, i.e. Hromadka and

Guymon, 1980a-c, and generalizes the numerical expressions so that the

extension to the three-dimensional case can be made by appropriate inte-

gration of the resulting expressions in the third dimension (see Chapter 3).

4



2.1 GOVERNING EQUATIONS

Two-dimensional unsaturated Darcian soil-water flow in a nondeformable

soil matrix n may be described by the partial differential equation

(-x( 4) + --L(Ky a ) - -L., (x, y) en 1

where (Kx, K y) are anisotropic hydraulic conductivity values in the (x,y)

directions, respectively; * is the total hydraulic energy head (0 - * + y);

* is the soil-water pore pressure head; and e is the volumetric water

content. In (1), water content is assumed to be functionally related t-

soil-water pore pressure according to the usual soil drying curve, with

hysterisis effects neglected. Thus,

e (4), m. < 0 (2)
Se° , > o

0
where e is the soil porosity, assumed constant.

Guymon and Luthin (1974) define a volumetric water content to pore pressure

gradient by

a, < 0
4* = -(3)

0 , >0 "

Therefore, (1) may be rewritten as

a K I + y y-y - * t (x,y)CS (4)

5
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For ease of presentation, the soil matrix 1 is assumed homogeneous and

isotropic with hydraulic conductivity Kh. Therefore, (4) is simplified

for discussion purpose as

2.2 NUMERICAL SOLUTION

The class of partial differential equations including (5) can be

described by an operator relation

A(O) - 0; (xy)cn (6)

where A(O) is the mathematical relation operating on the state variable, $.

The finite element method can be used to approximate (6) by the method of

weighted residuals (Pinder ahd Gray, 1977).

A(0)widxdy - 0 (i - 1,2,...,M) (7)

where 0 is approximated by a linear combination of suitable functions, $,
defined by

0 1 a a (8)
j-l

The subdomain version of weighted residuals uses the weighting functions

O,Cx,y) S
wj - (9) .,

where Q is discretized into two-dimensional nodal domains (with -"

respect to finite element e) .5

e (10)

6



Thus, the subdomain method is simply an appropriate integration of the

governing equations over each finite element.

The nodal domain integration method (Hromadka and Guymon, 1980a,b)

is an application of the finite element subdomain approach over appropriately

defined nodal domains. These nodal domains are partitions of the finite

element such that the resulting nodal domain corresponds to the control

volume configuration established by Spalding (1972). For a two-dimensional

triangle finite element, the nodal domain partitions are established by the

triangle medians as shown in Fig.2.1 allocating one-third of the triangle's

area to each respective nodal domain. Detailed mathematical descriptions of

the integration process for linear and nonlinear partial differential

operators are given in Hromadka and Guymon (1980a,b,c). These derivations

result in an expression

(k+l)At (k+l)At

J (x, I dydt + f Kh(x,y) d Ih Kahx~y -h ,xy ,

kAt Qe(y) re(y.) kAt ge(x re (y)

(11) ..

(k+l)At

'' 4 Ie 4  dxdydt ,"P5

kAt Q-e

where integrations are made on the assumed shape function spatial and

temporal distributions of the state variable and nonlinear parameters.

This integration procedure substantially differs from the integrated

finite difference control volume approach (Spalding, 1972) due to the finite

difference approach assuming the state variable to be constant interior to

each control volume (nodal domain) and due to the finite difference approach

assuming flux terms as constant (spatially) along each side of the control

7

, ?-..



Iii

II

FIG. 2.1. LINEAR SHAPE FUNCTION TRIANGULAR FINITE ELEMENT
PARTITIONED INTO NODAL DOMAIN CONTRIBUTIONS

BY MEDIANS

I ',.

I .t

0.S

FIG.2.2. VECTOR DESCRIPTION OF TRIANGLE FINITE ELEMENT
GEOMETRY
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volume rather than integrating the spatial variation of the flux term as

defined by the assumed shape function distribution of the state variable.

Another major difference of the nodal domain integration method from the

usual finite element and finite difference approaches is the use of the

resulting linear shape function nodal domain integration numerical statement

to approximate higher order or more complex families of shape functions with-

out an increase of computer memory requirements associated to the use of such

more complex families of shape functions (Hromadka and Guymon, 1981 ).

In order to evaluate the spatially integrated flux terms of (11) for

each nodal domain partition of a triangular finite element, the triangle

geometry is defined by a system of vectors as shown in Fig.2.2. For the

assumed linear shape function variation of the state variable, 0, in the

finite element triangle the spatially integrated flux term contribution to the K
triangle partition associated to nodal domain 11e is geometrically determined

by Fig.2.3. From Fig.2.3 flux must contribute to fl through the boundaries of

f e and can be calculated by the flux vector through state variable O-values

si (at node i) and s' as shown in the figure. Thus,

I
0' = - (0 d + *kd2 ) (12)

The integration of the spatial boundary of fi normal to the considered flux

vector is L/2 as shown in Fig.2.3. Thus, the efflux is geometrically

determined to be (constant for linear shape function approximation) -,

d d
Kh + 0k- -

(13)

h
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FIG. 2.4. LINEARLY DISTRIBUTED STATE VARIABLE VALUES IN NODAL
DOMAIN PARTITION 01
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aud the integrated efflux contribution for is

- E# dlL + #kd2L - L2 *] (14)
2hL £

where, from Fig. 2.3,

2 (15)L rjk er k Xjk Yjk

dlL rik r Jk Xikjk + YikYJk (16)

.&. 
-bd 2 L ij r jk " - (xijzjk + yijyjk)  (17)

and where xjk ' xk - xj. In vector notation, the integrated efflux contribution

for nodal domain partition ile of the triangle finite element (assumed linear
i

shape function) is

(e)
%h 2 ( 2 + y 2 x1xM
4A [(Xjk + Yjk - (xikxjk + YikYjk)(Xijxjk + YiJYjk)] j (18) A-

(e)e (ke)'

where in (18) A~e) is the area of the finite element triangle, and he)

uniform value of hydraulic conductivity assumed for a sufficiently small finite

element triangle (Hromadka and Guymon, 1980a).

This net efflux contribution to the triangle partition of Sil is identical

to an integrated finite difference control volume approach as outlined by

Spalding. Additionally, the net efflux term of (18) is identical to the

Galerkin-determined finite element triangle component of the net efflux for

nodal point i (Pinder and Gray, 1977).



The above described geometric considerations can be applied for each

nodal domain partition of the triangle resulting in an element conduction

matrix identical to a Galerkin-determined element conduction matrix (linear

shape function)

((e) (Xjk Yjk) - (Xikxjk + YikYjk ) Cijxjk YijYjk )

K(e -e 2 +Y2 -Xy(9

4A(e) xik ik ijXik + Yijik)(19
(symetric) 2 + 2

where (e) refers to properties of the finite element triangle element (e).

The notation and representation of the element conduction matrix by (19)

can be compared to the finite element analog given in Myers (1971).

The nodal domain integrat~on method evaluates the integration of the state

variable in the triangle partition for 01 as
i

I A(e)
J dxdy - -- [22*i + 7*I + 7 *k] (20)

ne
i

where (20) represents-the integrated variation of a linearly distributed

state variable in 1, (Fig. 2.4.)

The integrated finite difference control volume contribution of the

state variable integrated or S (as described by Spalding) would be

A dxdy - 3 [oi] (21)

i

The Galerkin-approach finite element so-called capacitance contribution

is given by (Myers, 1971)

A(e)
[2t + + k]  (22)

12
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In matrix notation, the nodal domain integration numerical analog is

represented by the element capacitance matrix for 6*(e) a uniform value of 6

within a sufficiently small finite element triangle (e)

(e) A(e)B*(e) rn (23)

(r) 3 (rt+2) 1 1 i

where (n - L- ) corresponds to a linear shape function distribution of the

state variable in the finite element triangle, and other values of n correspond

to other shape function approximations as estimated by a linear shape function

approximation (for example, the alternation theorem; Hromadka and Guymon, 1981 ).

From (21) and (22), the element matrix of (23) also represents the

Galerkin-version of the finite element method as well as the finite difference

analog for n - (2,-.), respectively. Thus, the various numerical approaches

are unified" by the nodal domain integration procedure where the finite element

and finite difference approaches are given by a specified constant parameter,

n.

The resulting nodal domain integration numerical approximation of (S)

is given by the cumulative triangle element contributions

t(e). 4, (e) •
( + ) 0 (24)

1.1 4. o

where dots represent time derivatives of nodal point values of the state variable,

2
*, and n - (2, T, -) correspond to a linear shape function numerical approxi-

mation by the Galerkin finite element, nodal domain integration, and finite

difference methods, respectively.

From the above, the popular domain numerical methods of finite element .

and finite difference are unified into an overall numerical approach which is

1'

13 "-



a subset of the nodal domain integration approach. Consequently, a computer

program based on a finite element approach may be modified into the unified

approach of the nodal domain integration method.

Nodal domain integration numerical statements for irregular rectangular

domains (and one-dimensional domains) are contained in other recent papers

(Hromadka and Guymon, 1982ab). Extension to three-dimensional problems is

provided in Chapter 3. Additionally radial, cylindrical and spherical coor-

dinate systems are considered in Appendix A.

2.3 CONCLUSIONS

The nodal domain integration numerical approach has been used to determine

a numerical analog which incorporates the finite element (Galerkin) and

integrated finite difference methods as special cases. The resulting

nunerical statements involve the same computational requirements as does the

finite element procedure. Therefore, the nodal domain integration procedure

unifies the finite element and finite difference approaches by a single

numerical statement as a function of a single constant parameter. Thus,

computer programs may be prepared based on the nodal domain integration.

procedure which inherently contains both the finite element (Galerkin) and

finite difference techniques.

11

14



REFERENCES

1. Hayhoe, H. N., Study of Relative Efficiency of Finite Difference and
Galerkin Techniques for Modeling Soil-Water Transfer, Water
Resources Research, 14(l), 1978, 97-102.

2. Guymon, G. L., and J. N. Luthin, A Coupled Heat and Moisture Transport
Model for Arctic Soils, Water Resources Research, 10(5), 1974,
995-1001.

3. Rromadka II, T. V., and G. L. Guymon, Some Effects in Linearizing the
Unsaturated Soil-Moisture Transfer Diffusion Model, Water Resources
Research, (16), 1980a, 643-650.

4. Hromadka II, T. V., and G. L. Guymon, Numerical Mass Balance for Soil-
Moisture Transport Problems, Water Resources Research, (3), 1980b,
107.

5. 1romadka II, T. V., and G. L. Guymon, A Note on Time Integration of
Soil-Water Diffusivity Problems, Advances in Water Resources,
(3), 1980c, 181-186.

6. Hromadka II, T. V., and G. L. Guymon, Improved Linear Shape Function
Model of Soil Moisture Transport, Water Resources Research, (3),
1981, 504-512.

7. Hromadka II, T. V., and G. L. Guymon, Nodal Domain Integration Model of
One-Dimensional Advection-Diffusion, Advances in Water Resources,
(5), 1982a, 9-16.

8. Hromadka II, T. V., and G. L. Guymon, A Note on Numerical Approximation
of Advection-Diffusion Processes in Rectangular Domains, Advances
in Water Resources, (5), 1982b, 56-60.

9. Myers, G. E., Analytical Methods in Conduction Heat Transfer, McGraw-
Hill, New York, 1971.

10. Pinder, G. F., and W. G. Gray, Finite Element Simulation in Surface and

Subsurface Hydrology, Academic Press, 1977.
% ,

%-

15Q~

% ":



3. UNIFIED MODEL OF THREE-DIMENSIONAL HEAT TRANSFER
3.0 ITRODUCTION

A two-dimensional integrated finite difference method is presented by

Patankar (1980). This triangle element model can be extended to a three-dimensional

tetrahedron element model, and both the two- and three-dimensional finite

element models can be compared in the solution of linear heat conduction problems.

First, the integrated finite difference method is applied to a three-dimensional

heat conduction process where the global domain is discretized into tetrahedra-

shaped finite elements. By integrating the governing partial differential

equations on subsets of the finite elements (nodal domains), an extension

of the integrated finite difference (Spalding, 1972) analog is developed.

By using the subdomain integration version of the method of weighted residuals,

another numerical analog is developed which is similar to the integrated

finite difference approach. Comparison of the integrated finite difference

and subdomain integration numerical analogs to one determined by the Galerkin

finite element method of the weighted residuals process indicates that all

three analogs determine similar finite element matrix systems which when com-

bined into a global matrix system satisfy both Dirichlet and Neumann

boundary conditions.

Hromadka and Guymon(1981a,b)have examined the finite difference, sub-

domain integration, and Galerkin finite element methods for solution of

partial differential equations in one- and two-dimensional problems. They

combine these numerical approaches into a single numerical statement which

can represent any of the considered numerical methods by the specification

of a single constant parameter, n, in the element matrix systems. Examinations

of model approximation error in comparison to analytical solutions for linear

heat and mass conduction problems indicate that the element matrix mass

lumping n must be variable between elements and with respect to time in

16"
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order to reduce approximation error. That is, to minimize numerical approxi-

mation error, the method of numerical solution generally must vary through the

entire range of domain numerical techniques including the Galerkin finite

element, subdomain integration, integrated finite difference, (control volume,

or mass lumped finite element) and numerous versions of finite element mass-

weighting schemes. Extensive computer simulations of one- and two-dimensional

problems indicate that sometimes a single numerical analog will minimize the

approximation error for only a particular region of the solution domain or

only for a certain duration of the simulationand that continued use of the

particular numerical analog will produce approximation errors greater than

errors generated by switching the method of numerical solution to another

technique.

The reduction of the Galerkin finite element mass matrix into a diagonal

mass lumped matrix is well known (Zienkiewicz,1977). However, it is important

to note that the so-called mass lumped diagonal matrix is analogous to the

integrated finite difference capacitance matrix as developed by Spalding (1972).

An infinity of mass weightings of element nodal contributions can be determined

directly by introducing an improved linear trial function in the finite element,

where the element-boundary trial function continuity requirements are relaxed,

and then using the usual subdomain integration version of the weighted residual

process. The fact that certain mass lumping patterns may improve computational

results (Ramadhyani and Patankar, 1980) indicates that a unified model may be deve-

loped which utilizes a variable mass matrix and yet can still represent the well

known Galerkin, subdomain integration, and integrated finite difference analogs.

In this chapter, the general form of the three-dimensional nodal domain A.-

integration finite element matrix system will be developed. The resulting

element matrix system will be shown to represent an extension of the integrated

17
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finite difference method, subdomain integration version of the finite element

method of weighted residuals, and the Galerkin finite element method by the

specification of a single constant parameter. The finite element used is a

three-dimensional tetrahedron with a linear trial function used to approxi-

mate the governing transport equation's state variable within each element.

Although the main consideration of this work is towards diffusion processes,

an advection component is included in the model development for generalization

purposes.

The main objectives in this chapter are as follows:

(1) develop a three-dimensional integrated finite difference analog for

a diffusion (or advection-diffusion process) using a tetrahedron

finite element discretization. This objective is an extension of

the two-dimensional triangle element analog recently presented by

Baliga and Patankar (1980), and includes the development of a three-

dimensional model and the representation of the model in finite

element matrix form. An integrated finite difference approach is

seen to result in a node-centered control volume analog or, as it

is usually referred to in finite element models, the "diagonal

mass-lumping" finite element approach.

(2) develop a subdomain integration model for the tetrahedron finite

element using a linear trial function in each finite element. The

subdomain integration method is also referred to as a control

volume approach and has been shown to result in numerical models

which may give better approximation results than the often used

Galerkin finite element method. The subdomain integration analog

will also be developed into a finite element matrix form in a

manner such that the integrated finite difference and subdomain
integration models can be readily compared to the well known

Galerkin finite element analog.

18
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(3) develop a variable "mass-lumping" finite element analog.

(4) show that Dirichlet and Neuman boundary conditions are satisfied

in the global matrix systems for each of the above determined

analogs. This is significant due to the misconception that the

finite difference and subdomain integration analogs need special

formulae to approximate a Neumann boundary condition (e.g., Bear, 1979).

(5) develop a unified three-dimensional domain numerical analog which

represents all of the above numerical-models by the specification

of a single parameter in the resulting unified matrix system.

(6) since the various domain approaches determined above can be unified

into one numerical statement, use the unified model to examine

model approximation error by allowing the unified model to vary

between the infinity of available domain models. This objective

is achieved by determining the optimum capacitance matrix nodal mass

weightings in the finite element for two transient linear heat

conduction problems. Both two- and three-dimensional nocal mass

weighting factors are determined for comparison purposes. Methods .4.

to determine an optimum element nodal mass weighting factor, n,

is the subject of current research; however, a method for esti-

mating a mass-lumping factorn , for radial coordinates is given

in Appendix A, and in Hromadka and Guymon(1981).

3.1 GOVERNING EQUATIONS AND SET DEFINITIONS

A three-dimensional advection-diffusion process in an inhomogeneous aniso-

tropic nondeformable medium without sources or sinks may be macroscopically

described by the nonlinear partial differential equation

3 3T a~~- 3T 7 3 3- T - 3T
-1K -- UT + -<K-- VT I +-IK--WT=C-- (1) -
ax Lx ax ay yay - az z 3t
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where (x,y,z) are spatial coordinates; t is time; (Kx  - Kxx, K y K yy, K K zz)

are principal axis values of conductivity (e.g. Fickian diffusivity or thermal

conductivity); C is a capacitance coefficient; T is the state variable (e.g.

temperature); and (U,V,W) are (x,y,z)-axis advection components (e.g. fluid

velocity). It is assumed that (1) described the governing flow process in

the nondeformable global domain of spatial definition S1 with global boundary I.

All parameters defined in (1) are assumed variable with respect to both space ,

and time

C(x,y,z,t) for C E {Kx,K y,KzU,V,W,C} (2) v

In vector notation, (1) may be written as

r T
q • dF T  C dV (3)

r

where dr is the outward unit normal vector to surface F, IdFij = dA; and

9T 3T DT
q- (K- UT) i + (K VT) j + (K -- WT) k (4)

ax y z

The numerical approximation of (4) requires a discretization of the problem

domain, Q. The subdomain (control volume) and finite element discretization

processes differ. However by overlapping the two main discretization patterns,

the intersection of subdomains with the finite elements result in a third %%-

discretization composed of smaller "nodal domains" which are common to both

of the main discretizations. For an n-nodal point distribution in Q with

associated subdomains R. and boundaries B
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n
-2 jU R (5)

R - R - Rj U B (6)

Rj 2 Rk = Bj 2 Bk (7)

(Xjtyj) e Ra; x R., Jk (8)

Combining (3) with (5) and (6),

fq •dr f q • dIr (9)

r UBj

SC- dV C - dV (10)
at at

£2 UR.

A finite element discretization of 0 is defined by

=2 U£2e (11)

where each finite element Pe has a boundary Fe where
.1'

£e _e = e ure (12)

A set of nodal domains £2e can be defined for each finite element as the
J

intersection with associated subdomains

Qe -e R.D £e (13)

This set of nodal domains is defined for each finite element I by the index

of element nodal numbers(see Fig. 3.1 for the one-dimensional case; the

two-dimensional case is illustrated for triangles in Fig. 3.2)
e e Se (14)
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FIG. 3.2a. FINITE ELEMENT Q e WITH THREE VERTEX

LOCATED NODAL POINTS

(3)
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FIG. 3.2b. FINITE ELEMENT PARTITIONED INTO NODAL DOMAINS

, '..

%

FIG. 3.2c. SUBDOMAIN Rj AS THE UNION OF ALL NODAL
DOMAINS ASSOCIATED TO NODAL POINT j.
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where

se f{j j e# {e}} (15)

From (15) Se is simply the set of nodes associated to element e. A finite

element matrix system equivalent to the governing domain equation (1) is

generated for local finite element Qe by

{ C- C- dV {01 ,f J C Se (16)

Likewise, a subdomain integration statement for (1) is generated for local

subdomain R by

q • C - dV O) (17)

B. R t

Expanding the transport integral of (16) gives

.
3T T aT Seq K - Zx+K - Z + K - - UTZ - VT - WTZ dA j ES (18)

x x ay y I z I xI

where ( X, X ) are the direction cosines of dF, and dA is the differential

surface area. Equation (18) can be rewritten as

L 3T aT 3
q d K - Z + K - Z + K - Z dAf e x xy a ]y

-r e x y a

rrLUTZx + VTZ. + WV~z dA + e q drS

e elyzIej -, e
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where re - boundary of finite element Se. The first integral in the expansion

of (19) satisfies Neumann boundary conditions on re or preserves flux continuity

(due to conduction processes) between finite elements, Qe . In the global assem-

blage of U e , the first integral in the expansion of (19) also satisfies Neumann

boundary conditions on the discretized approximation of global boundary r by re

From (19), the element matrix system of (16) is given by

3T.

f-- ~ [UTiA + VT_ + WTk-] • d- - I _-d {01 J E: Se0
+ jT C - dV {O e (20)

r e r r e 
e J t

kj j j j

where it is assumed that boundary conditions of Neumann or Dirichlet are specified

on global boundary r.

3.2 NUMERICAL SOLUTIONS

In the derivation of the finite element integration statement of (20) for -,

no specification of the character of the state variable is assumed. In the fol-

lowing, the state variable T is assumed to be adequately approximated by a linear

trial function Te in each finite element 2e. Additionally, each 2e is assumed to

be a tetrahedron finite element with four vertex-located nodal points.

Therefore

e° e

T Te EL Te (21)
i J

where the L are the usual tetrahedra volume local coordinates in e and T .
J

e e
are nodal point values of the trial function estimate T in e Due to the linear

definition of Te in Qe all spatial gradients of Te are constant. Consequently.

several well known domain numerical solutions of (1) in _ embodied in the finite '

element method of weighted residuals result in similar numerical approximations

in Q except for slight variations in the element mass matrix.
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In the following, a Galerkin finite element (linear trial function),

subdomain integration (linear trial function), and integrated finite difference

analogs will be determined and combined into a single expression. For the

finite difference and subdomain analogs, the integrations of (1) on a nodal

d of each finite element e will be used to determine a finitedomain cover 0jo ahfnt lmn

je
element matrix system for S1e. For all three numerical methods, the following

description variable is defined:

-- . - UT] +-- a- UT] - C - , (x,y,z) E S1

ax xax y Y ay az Z z at

(22)

Although the Galerkin method of weighted residuals used to solve (1) in each e

is well known, its derivation of a finite element matrix system is presented in

order to develop some of the notation and simplifications used in the subsequent

determinations of the subdomain integration and integrated finite difference analogs.

521erkin Method of Weighted Residuals

In local element 2e ,

rJ CL.dV - 0 (23)

e
fee

generates a Galerkin finite element matrix system for approximation of (1) on 2

Equation (23) is linearized by assuming all parameters quasi-constant during a

small timestep At (e.g., Bear, 1979)

" e + e >> (e 2.e
; (x,y,z)(24)

For the linear trial function T definition of the state variable T in e the

x-direction terms of (23) are given by
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2Te aTe

(K - t e -) L dV
x axi ax (25)

aT e r T e e 

K J _ ~dA (K x _ - U dV
x ax ax ax

re e

where the first integral of (25) satisfies Neumann type boundary conditions on

global boundary r or conduction flux continuity between Q 0

For a linear trial function Te in Qe and Neumann boundary conditions on r,

a2 Te DT e 3Te 3L aT e
(Kxe Ue -) L dV- - (Kxe  Ue  _ L) dv (26)

ax 2  ax fe ax ax axee %e

aTe DTe
K - _ L- d V - U _ L dV (27)

ax ax ax f

where

ae e3T e  Ebj Tj e% '

ax 6V' (28) ...

e e ewhere T are nodal values of T at nodal points j; V volume

of the tetrahedron element; and b are vertex coordinate co-factors.

Substituting (28) into (27) gives

D a2Te 3Te ZbiTie aL Eb T e Ve
(Ke Ue -) L dV - Ke _ _ j V e ii (29)

ax2a x 2x 6Ve ax 6Ve 4

From Figs. 3.3 and 3.4 the shape function gradient in (29) can be determined

geometrically as (see chapter 2, equation 13 for two-dimensions)

--- I (30)

ax ax V ax (h x)

4%
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Thus,

L = - 1 (-hx) (A1 ,x) (31)

Ux (h 1,x) 3

where 1 (,x)is the projection of the triangle face 12,3,41 onto the (y,z)

coordinate plane.

Simplifying (31) and substituting into (29) gives

a aTe CT)Eii (t) bie *e'

(K e ae i (Ax) b T - (32)

--KU j ) dV -) x L (i
fx 6V 3 6Ve  4

The (y,z) direction terms are determined analogous to the above. The time

derivative term of (23) is modeled by

Ce a LCefi dV - at dV (33)

Solution of (33) determines the Galerkin finite element capacitance

matrix for local element se

". .

ee  e  2 1 1 ] 2

pC(2 )  T I (34) "°e

e 1 1 2 3

Ll 1 2

Szubdomain $ Tt e aa ti on 
.

e
A cover of finite element e is given by the union of nodal domains i.

where j E Se .  For a tetrahedron finite element, local nodal domain e in e is
In

assumed defined by Fig. 3.4. NIP%
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The subdomain integration method solves (1) in ,2 by

dV - 0 j c S' (35)

For the x-term transport components of (1),

L - ]--x ue T  dV - M , j Se  (36) :

Te'

eb

Expanding (36) gives

e Te ae
e _ e _ V-e (7

-e K ax fe ,.ef -m e K x e;x (37)

'"i

The first integral in (37) satisfies Neumann boundary conditions on r and con-

duction flux continuity between Qe similar to the Galerkin formulation.

Thus. (36) reduces to

Te e

Ke dA Ue  e (3

~e e/-7 a x x ~ e a x
-jV e~~~~ e,,, ;x

For a linear trial function Te in 2, (38) simplifies to

K edA _ U dV =A (39); x e-e,.ee x 2..
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The surface rere projection onto the (y,z) plane is given by the integral
jii

with respect to dA in (39). From Fig. 3.4,x

1#

e - -e  x =  3(A l'x )  (40)

where(A1,1)is the projection of triangle face onto the (y,z) plane.

Additionally, from Fig. 3.4

Vef dV = - (41)
e 4

Combining (28), (39), (40) and (41) gives for Qe

~Je
e dA Ue - dV-

x ax ;x dV
Ie_,\ re -e

J (42)

Zb Te (Al )  ZbiT e Ve

K e  _-Ue  ii
x 6 Ve 3 6Ve 4

Comparison of (32) to (42) indicates that the Galerkin finite element and sub- %

domain integration method of weighted residuals determine identical transport

system matrices for the assumed linear trial function Te in e.

For the time derivative component of (36), A

Ce = e -dV C e rTe dV Se (43)

S )e t t

which in matrix form gives
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F75 23 23 23-
eI

C e V e  23 75 23 23 ;e
er7q 2 -3

i 23T - 576 23 23 75 2 (44)

3 23 23 7 ie

irtcqrated Finite Piffcrence

Spalding (1972) developed an integrated finite difference numerical solution

for partial differential equations such as (1) defined on rectangular-shaped

control volumes (subdomains). In this version of the subdomain integration method,

it is assumed that

fTe dV - T e f dV (45)

R R
J j-

that is, the nodal value of T at node j is assumed equal to the spatial distri-

bution of T in subdomain R
J,

ee
For a linear trial function T in each e, the transport terms of (1) evaluated

on each B determines a conduction matrix identical to the Galerkin and subdomain

integration approaches previously derived. From (45), the capacitance matrix from

an integrated finite difference approach differs from both the Galerkin and sub-

domain integration approaches and is given in matrix form by the so-called lumped

mass diagonal matrix -e,.0 -1 *:
1 0 0 0 T

pe (e) je -*(46) V
- 0 0 i

U 3 '%p

0 0 1 0..
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Nodal Domain Integration

Hromadka and Guymon (1981) examined the one-dimensional form of (1) and

developed a modification of the subdomain integration method of weighted residuals

which improved numerical modeling accuracy by the approach of approximating a

higher order trial function Te estimate of the state variable T by using a linear

trial function Te . Using this approach, a significant increase in modeling

accuracy was achieved while preserving matrix symmetry and the reduced matrix

sizes associated to a linear trial function. By integrating the governing

equations on suitably defined nodal domains, a variable symmetric element capaci-

tance matrix was defined which represented the Galerkin finite element, subdomain

integration and finite difference methods as special cases.

The nodal domain integration numerical statement for solution of (1) on Se

using a linear trial function is found to be similar to the one-dimensional case

and is given in element matrix form for e by

Ke Te + Pe e ={} (47)

where Ke  sum of element ,e conduction and convection matrices given

(for the x-term) by (32) and (42);

e eCe Ve i . 1 1
C~ __

P (r) (48)
~ 4 (r+3) 1 1 n 1

L l I ni_

and Te  re = vectors of element 2e nodal values and time-derivative of nodal values.

In (48), the Galerkin finite element, subdomain integration, and integrated

finite difference numerical statements for a linear trial function in !e is given

75by i (2,, respectively.
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Consequently, a single computer code can be prepared which readily

represents each of the more popular domain numerical methods by the specifi-

cation of single parameter. Additionally it should be noted that (47) accom-

modates both Dirichlet and Neumann boundary conditions on F similar to the

Galerkin finite element approach

For the one-dimensional nodal domain integration approach the corresponding

n parameter was determined to be a function of time and variable between finite

elements (Hromadka and Guymon, 1981b),

T T (,e,t) (49)

As an aid in selecting the mass-lumping factor, a procedure for calculating :%

the factor as a function of timestep and element size is given in Appendix A

for the case of radial coordinates.

3.3 APPLICATION

As an application of the above methods, two linear heat conduction

problems (Figs. 3.5 and 3.6) are modeled to examine approximation error for

various values of mass lumping. For both problems, a two- and three-dimensional -p

nodal domain integration model are used to approximate the temperature fields.

Using mean relative error as the measurement, the finite element mass matrix

was varied by trial and error until a value of n was determined such that the 4

timestep advancement (Crank-Nicolson approach) resulted in a minimum error. In

all simulations, the finite element mass-lumping factor (n) is assumed constant

throughout the solution domain for the time advancement timestep. Consequently,

mean relative error is minimized as a function of one mass-lumping variable.

The plots of n during the simulation are given in Fig 3.7 where both two- and %

three-dimensional (triangle and tetrahedron elements) models are used to solve

the test problems.
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From Fig. 3.7, both two- and three-dimensional solutions indicate that for

the initial portion of the numerical solutions, an integrated finite difference

analog minimizes the error measurement. As the solution progresses with time,

however, the numerical analog approaches a subdomain integration numerical

model. This variation in numerical approach was found similar to other test

problem results for one- and two-dimensional problems. Apparently, the integrated

finite difference approach reduces mean relative error when the state variable .1

gradient is severe within a finite element, and a subdomain integration analog

best serves a milder variation of the state variable in a finite element.

Use of different timesteps and element sizes altered the shape of the

n curves in Fig. 3.7, but the scan of numerical analogs from integrated finite

difference to subdomain integration is still evident.

As suggested by (49), the n factor was found to vary both between finite

elements and with respect to time for one-dimensional problems. The extension

of such an approach to multidimensional problems may follow based on the selec-

tion of a rule to determine n for each finite element. One approach is to

approximate a higher order or more complex trial function within a finite element

by a linear trial function, and then use the improved linear trial function to

determine an appropriate n mass-lumping factor. As n varies, a global matrix

regeneration is required which increases computational effort. However for

highly nonlinear problems, global matrix regeneration may already be frequently I1

necessary which helps offset the n factor complications. Appendix A presents

an approach for selecting the mass-lumping factor, and the approach tested

for the case of a radial coordinate system.
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The results of the two test problems presented in this chapter are

typical of the overall results obtained by numerous other computer simu-

lations of problems where analytical solutions exist. Generally speaking,

holding the mass-weighting factor n uniform and constant in each finite

element results in a numerical method which provides varying degrees of

approximation error. That is for some problems, a constant mass-weighting

numerical model (such as Galerkin, finite difference, subdomain integration,

or some other selected mass-weighting model) may provide a "best" overall

numerical approximation. For other problems, the same selected mass-weight-

ing model may provide a "best" numerical approximation for only a certain

interval of the simulation or for only a certain region of the total problem

domain. This generality applies to one-, two- and three-dimensional problems

when using the well known rectangle, triangle and, as presented in this

chapter, tetrahedron finite elements.

Although the test problems considered here only indicate the necessary

variation in uniform finite element mass-weightings to minimize a measure of

error (while holding the mass-weighting factor constant between finite

elements), similar variations in mass-weightings were found evident when

holding finite element mass-weighting's constant with respect to time and

yet variable between finite elements. That is, if the finite element mass-

weighting factor were allowed to be variable between finite elements but held

constant during the entire simulation, different distributions of n through-

out the problem domain resulted in various levels of approximation accuracy.

Methods for determining mass-weighting factors for each finite element .

are presented for one-dimensional problems in Hromadka and Guymon (1981).

Two techniques of improving a linear trial function in each finite element

are considered. Each improved trial function approach results in a

variable mass-weighting factor for each finite element.
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It is noted from the extensive computer simulations prepared during

this research, that there is a strong correlation between the minimization

of overall approximation error and the use of a large n factor distribution

(e.g. a finite difference analog) in regions of large or fast variations

of the problems governing state variable. Additionally, use of a sub-

domain integration n distribution in regions of mild or slow variations '

of the state variable also tends to reduce overall approximation error.

Surprisingly, the various optimized n curves, such as shown in Fig. 3.7,

did not include the often used Galerkin finite element numerical model.

3.4 CONCLUSIONS

A nodal domain integration numerical model is derived for approximating

a three-dimensional anisotropic heat conduction process in an inhomogeneous

continuum. The nonlinear partial differential equation is linearized in each

tetrahedron-shaped finite element by assuming all parameters quasi-constant

for small durations of time. A linear trial function is assumed to adequately

describe the governing state variable in each finite element. %

The resulting nodal domain integration model is found to represent the

Galerkin finite element, subdomain integration, and finite difference methods

as special cases. Additionally, both Dirichlet and Neumann boundary conditions

are accommodated similar to a Galerkin finite element numerical model.

Application of the nodal domain integration model to linear heat conduction

problems indicate that the finite element mass matrix must vary with time in

order to provide an optimum numerical solution for the entire simulation.

The mass matrix is defined as a function of a single variable, n, and allows

a good representation of the required mass-lumping necessary to minimize

numerical solution error. Use of the numerical model allows a unified computer

code to be developed which offers the capability to represent a Galerkin, sub-
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domain integration, integrated finite difference, and an infinity of different

mass-lumped matrix models, as well as provide the capability to vary between

these numerical analogs according to some specified model-selection rule.

From the complete NDI development of Chapter 3 for three-dimensional flow

problems and the two-dimensional development of Chapter 2, it is seen that

both heat and soil-water NDI models can be prepared which represent the Galerkin

finite element, integrated finite difference and subdomain integration

methods by the specification of a single mass-lumping factor. This NDI ap-

proach is used in program FROST2B to model both the heat and soil-water flow

regimes. Consequently, the program user can specify a particular domain analog

by the use of the appropriate mass-lumping factor.

p.'
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4. ISOTHERMAL PHASE CHANGE MODEL

4.0 INTRODUCTION

A model of phase change in freezing and thawing soils is developed for

cold regions engineering problems which require two-dimensional analysis

of the thermal regime of soils. Such problems include complex boundary

conditions such as atmosphere-ground surface thermal interaction and

snowpack-insulation. Other concerns include complex soil conditions such

as the presence of a peaty muskeg or tundra-like soil which may provide

thermal insulation for underlying ice-rich mineral soil. Although several

models have been developed to predict temperatures in freezing and thawing

soils, oftentimes the key question is simply whether or not the soil is

frozen since soil structural properties are significantly influenced by

the soil-water state of phase.

The history of modeling the coupled heat and moisture transfer process

with phase change in freezing (and thawing) soils seems to begin with the

work of Stefan in 1890. By assuming that water freezes in the soil at a

constant temperature (0Q the equations of conduction heat transfer can

be solved exactly. The resulting solution is known as the moving boundary

problem, and is inadequate for soils where moisture is retained in the

thawed condition (for freezing temperatures), or when moisture transfer

occurs.

Neumann expanded on Stefan's analysis by including a partial differen-

tial equation system to describe the thermal profile on both sides of the

moving boundary. Although inadequate for real world systems, the Neumann

problem can be used to verify numerical models of soil freezing wherein

moisture transfer and residual unfrozen moisture contents are neglected.

Such applications of Neumann's anaylsis were used in Berggren (1943) and
Aldrich(1956). Further exact solutions are available for soil freezing

problems. These mathematical developments (Goodman, 1964; Sikarskie and
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Boley, 1965) are valid, however, only for special case studies.

For problems of soil freezing where an unfrozen moisture content exists

below the freezing temperatures, a moisture transport process is generally

also occuring. Williams(1972) concluded that this moisture transfer effect

is usually of the magnitude that ignoring its contribution can lead to

unacceptable errors. The presence of moisture below freezing temperatures

negates the assumptions used in the moving boundary problems. Thus, an

entirely new approach to fine-grained soil freezing analysis was required.

Lukianov and Golovko (1957) introduced the "apparent specific heat capacity"

approach whereby the latent heat effects of freezing water are lumped into

the transient heat capacity term of the heat transport equation. P.?

With the advent of computer simulation capability, the past two decades

have witnessed considerable effort in freezing soil analysis developments.

These recent numerical modeling efforts can be divided into two groups
. :.

depending on whether soil moisture transfer effects are included.

Nakano and Brown (1971) modeled the heat transfer process while

Harlan (1973) approached the coupled heat and moisture transport problem

with a finite difference numerical algorithm, which is based on the assump-

tion of an analogy between moisture transport processe in unsaturated soil

and a freezing soil. Guymon and Luthin (1974) included vertical soil-water

flow in a finite element model of a one-dimensional vertical soil column.

Sheppard (1978) and Taylor and Luthin (1978) also presented mathematical

models for the coupled heat and moisture transfer process. These models use

the assumption that water content of the soil is a function of temperature

during phase change. Jame (1978) expanded on Harlan's model to compare

numerically simulated results to experimental data. It is noted that these
'p.

later models require spatial and temporal magnitudes on the order of 1.18 in.

(3 cm) and 0.5 hours, respectively. A method to extend the above models to
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economically model large-scale, long duration two-dimensional problems has

not been advanced. These models and numerical models of frost heave are

reviewed by Guymon, et al. (1980) and Hopke (1980) among others. It is

noted that while one-dimensional models of soil freezing or thawing are

adequate for a large number of applications,at least two-dimensional models

are required for many problems such as buried pipelines, roadway berm prob-

lems, and embankments on permafrost.

Geothermal models (i.e., soil-water flow effects are neglected) often

provide a thermal analysis capability which is sufficient for many problems.

Examples of geothermal models which are reported in the literature include

the isothermal phase change model of Bafus and Guymon (1976), the two- and

three-dimensional isothermal phase change model of Guymon and Hromadka (1977),

and more recently the sophisticated two-dimensional, moving-mesh, finite

element model of Albert (1984).

An advantage of the continuously deforming grid system is that the

freezing front is tracked sharply, and requires negligible interpretation ..

of nodal value estimates of ice content to locate the interface between

frozen and unfrozen soil. An earlier one-dimensional version of a finite

element continuously deforming coordinate system model is presented in

detail in O'Niell and Lynch (1981). Currently, both of these models are

restricted to homogeneous soil systems. Additionally, the mathematical

modeling approach results in a type of convection term due to the precise

handling of the mesh movement. The mesh moving algorithm requires addi-

tional computational effort in order to provide a freezing front coordinate-

movement approximation coupled with an interior domain nodal point trans-

formation and finite element regeneration capability. Such a modeling

approach may be inadequate, however, for soil-water freezing/thawing
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problems which involve soil-water flow effects and a nonhomogeneous soil

system.

The main objective of this chapter is to present the soil-water phase

change modeling approach used to couple the heat and soil-water flows

described in chapters 2 and 3, respectively. The ultimate goal of this

effort is to develop a computer model capable of determining the thermal

and moisture states of a two-dimensional soil system subjected to the

freezing and thawing processes experienced in cold climate regions. A -z

major factor influencing the choice of the modeling approach is that not

only should the computer model be accurate, it should also be economical to

use, without the need to obtain parameter data which is costly to evaluate.

Additionally, it is desirable that the computer code be prepared such that

it can be accomodated on small computers such as the PDP 11/34 or Data N

General "Eclipse" computer systems.

4.1 HEAT AND SOIL-WATER FLOW

The theory of heat transport in freezing soils and their thermal pro-

perties have been the subject of several recent publications such as .

Lunardini (1981) and Farouki (1981). For two-dimensional heat flow in

isotropic soils, the governing partial differential equation is

3 [K aT ] + r K 3T aTa3T 9T
- % +- - LC -CU -+CV -
x ax 3y L t m 3t 3t ax ax

where x and y = cartesian coordinates, t=time, T=soil-water-air-ice mixture

temperature,e =volume of ice per unit total volume of soil, KT-thermal
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conductivity of soil-water-air-ice mixture, Cm=volumetric heat capacity of

soil-water-air-ice mixture, Luvolumetric latent heat of fusion of bulk water,

0i = aW 
= density of ice and water, respectively, Cw=volumetric heat capa- 

A

city of water, and U and V =the x and y velocity flux components. In (1),

the latent heat parameter, L, may be assumed to be constant for temperatures

less than -200C (Anderson, et al, 1973). The thermal parameters, KT and Cm,

are assumed to be functions of the volumetric content of each material constituent

over the nodal point control surface and control volume (chapter 3). To

reduce computational effort, the convection terms in (1) are approximated

as an average value estimated from the previous timestep solution, and then

included in the load vector term of the numerical analog. Figure 4.1 illus-

trates the heat flow conservation model used for each nodal point. For

example, DeVries (1966) uses a volumetric fraction proportion

C -ZC e (2)M i J

where Cj=volumetric heat capacity of the jth constituent and ej =volumetric

fraction of the jth constituent. The heat flow equation is nonlinear due

to the KT and Cm parameters being functions of ice and water content in a "a"

freezing and thawing soil. Other considerations include relationships ,. _

between temperature and soil-water undergoing phase change such as discussed

by Anderson, et al (1973). A mathematical model of soil-water flow in un-

frozen, isotropic soils given in nondeformable saturated or unsaturated

porous media is (e.g., Bear, 1979)

+ -+ s (3)3X 3 ayay at.-'

where €=total hydraulic head, K =Darcy hydraulic conductivity,
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ALGORITHM ALGORITHM PROCEDURE
STEP NUMBER

(1) Estimate area-averaged thermal *@NODE

parameters of heat capacity over
the control volume R., and thermal
conductivity on the aontrol
surface B. *1!

(2) Estimate nodal values of tempera-
ture at time t+At given the tern- TRIANGLE ELEMENTS SURROUNDING
peratures at time t. (See Chapter NODE

3).
- BISECTOR
+a CENTROID

(3) If nodal temperature values at
time t or t+At indicate phase
change of soil-water, modify
nodal temperature values and -
thermal parameters according to
the isothermal phase change model.

TRIANGLE ELEMENTS SUBDIVIDED
INTO NODAL DOMAINS 5,

•HEAT FLUX w,

(4) Return to Step (1) to model next Bi

timestep advancement.

CONTROL VOLUME R i AND CONTROL
FIG. 4.1. HEAT FLOW MODEL SURFACE Bi ASSOCIATED TO

NODE (0
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vu.Volumetric water content, and S-moisture sink. Figure 4.2 illustrates the

soil-water flow conservation model used for each nodal point. In unsaturated

soils KH may be assumed to be a function of soil-water pore pressures (soil-

water tension). The moisture sink term for a freezing soil accounts for

the phase change of liquid water to ice by

S - L (4)

Application of (3) in a freezing/thawing problem requires the incorporation

of special considerations in order to describe soil-water flow in a frozen

soil. For example, the presence of ice in soil significantly affects the V

rate of soil-water flow (Nakano, 1982). This impact may be interpreted as

a reduction in the Darcian hydraulic conductivity (assuming a Darcian soil-

water flow model). In studies by Jame (1978) and Taylor and Luthin (1978), N.

the soil-water flow model hydraulic conductivity had to be significantly

reduced in a freezing zone in order to adequately reproduce measured thermal

and soil-water data in freezing horizontal columns. From these studies, p.-..

a general hydraulic conductivity relationship was proposed

-E9
K - 10 (5)

H 10

where K=soil-water hydraulic conductivity, KH=unfrozen soil-water hydraulic

conductivity, 9,=volumetric ice content, and E=a calibration factor evaluated

from one-dimensional vertical column soil freezing laboratory models. In

the computer model, the hydraulic conductivity in (5) is assumed to be zero

for completely frozen soils. Soil-water freezing characteristic curves

indicate that soil-water exists even at very cold temperatures. This "resi-

dual" water content is used as a lower bound for water content in the model.
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ALGORITHM ALGORITHM PROCEDURE
STEP NUMBER

(1) Estimate area-averaged soil-water 
9NODE

flow parameters oft3 over the
control volume R., hydraulic con-
ductivity on the control surface Bi.

(2) Estimate nodal values of soil-water
energy head at time t+ At given
the values at time t. (See TRIANGLE ELEMENTS SURROUNDING

Chapter 2.) NODE (D

- BISECTOR
+ CENTROfO

(3) If phase change is predicted from
the HEAT FLOW MODEL, modify nodal
values of water content, pore pres-
sure and energy head according to
isothermal phase change model.
Adjust soil-water flow parameters
to accommodate soil-water-ice
mixture.

TRIANGLE ELEMENTS SUBDIVIDED
INTO NOOAL DOMAINS

-" SOIL- WATER FLUX

(4) Return to Step (1) to model next
timestep advancement. A

CONTROL VOL.UME R i AND CONTROL.

leFIG. 4.2. SOIL-WATER FLOW MODEL SURFACE ei ASSOCIATED TO
.fN O D E (D.

W,°

49

d-,



Soil-water content is assumed a function of pore pressure head by

= 0 (6)

where e0 =porosity, =soil-water pore pressure head, and A and n =regression

fit coefficients.

4.2 PHASE CHANGE

The two-dimensional phase change model has been under continual develop-

ment since 1979. The primary effort has been under the direction of Dr.

Richard L. Berg of the U.S. Army Research and Engineering Laboratory in

Hanover, New Hampshire. The main objective of this effort is to develop

a computer model which provides analysis capability for geotechnical engineers

involved in cold regions engineering project. The program is designed to be

comprehensive, and yet easy to use with a minimum of field data requirements.

Development of this model has been reported upon as follows (Guymon, et al.

1984): Guymon, et al. (1980) and Berg, et al. (1980) represented the con-

cepts of a modeling approach and presented early verification and sensitivity

results. Subsequently, Guymon, et al. (1981a) presented additional veri-

fication results, and Hromadka, et al. (1982) presented a detailed evaluation

of model sensitivity to the choice of numerical analog. Guymon, et al. (1981b)

evaluate parameter sensitivity and develop a probabilistic model which is

cascaded with the deterministic one-dimensional model. Finally, Guymon, et al.

(1984) present applications of the two-dimensional model applied to pipeline .'

studies and roadway embankments.

A summary of the key assumptions used in the two-dimensional model are

as follows:
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1. Soil-water flow occurs in unfrozen zones by liquid water film

driven by hydraulic gradients such as described by Darcy's law.

2. Soil-water flow in frozen zones is negligible.

3. Heat flow is mathematically described by (1).

4. Soil-water flow is mathematically described by (3).

5. Soil-water phase change may be approximated as an isothermal

process.

6. Unfrozen zones are nondeformable, and in freezing zones or frozen

zones, deformation is due to ice segregation or lens thawing only.

7. Soil water pore pressures in freezing zones are governed by a

residual water content determined from soil freezing tests. ,oo

8. Hysteresis effects are negligible.

9. Salt exclusion processes are negligible.

10. Constant parameters (e.g., porosity) remain constant with respect

to time; i.e., freeze-thaw cycles do not modify parameters.

11. Freezing and thawing processes in a two-dimensional medium occur

in such a way that there are no internal shear or stress forces

developed between different zones.

The phase change model which couples the heat and soil-water flow models

is based upon the simple control volume approach where freezing/thawing occurs

isothermally (Guymon and Hromadka, 1977). The algorithm is based on a control

volume generated by the nodal integration method. A volume of freezing soil

is retained at OC until the latent heat of fusion of all available soil-water

for freezing has been evolved.

Figure 4.3 illustrates the phase change model logic, and indicates how

the entire nodal point control volume is lumped during phase change. %
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FIG. 4.3 ISOTHERMAL SOIL-WATER FREEZING MODEL

VOBTAIN Nodal Temperature Value for Time (t+At): T-i,6

ISTl,,t>Do? yes no
" - freezing ,

no

isT ? yes no

ST i < °?freezing

no; #( '

IF'

Soil-water available for freezing (Si) is estimated from nodal water
te+ At) ::

content (1 i  and residual water content (0 RES) by
S fEt+ At E)

i= i(ei  -eRES) dA

i s s i > o? freezing

yes -

;-.

Heat evolution (AQ i) during timestep At is estimated using the

heat capacity C by AQi  Cm(O°C - T ) )dA"m I m I R.
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EVALUATE

E =(S. -AQi/L a:

1 0

10 freezes
.set Tt+ At 0ooC

o setW AtE

E >0

L- *soil-water volume freezing is AQ./La

t+ At o
*set T, = C

*decrease nodal water content value

E<0 ~

*soil-water volume freezing is Si

t+Ateset TL =(S.L - AQ.)

Cm RfdA%
i
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4.3 MODEL PARAMETER RELATIONSHIPS

Because the soil-water flow model is based on energy head, solution of

(3) requires that the relationship between soil-water pressure head and

soil-water content be defined where the time-derivative term is replaced by

ae _e 3 (7)

The partial derivative, is determined from Gardner's (1958) relationship

of (6). Hydraulic conductivity is defined as a function of 4 by

K
0 + (8)

'k m +1

where Ko=saturated hydraulic conductivity, and AK and m are calibrated

parameters. Hydraulic conductivity in soil-freezing zones is estimated by

the exponential relationship of (5). .

Soil-water pore pressures at freezing fronts are defined by

E(at freezing front) = @ (ORES) 'S

where ORES is a residual soil-water content.

Additional data required for use with the model are boundary conditions

for the heat and soil-water flow models, and initial conditions of temperature, -

water content and ice content. Boundary conditions are modeled as constants

or sinusoidal functions specified by the program user as to amplitude and

wave period. Modeling data input requirements are discussed in detail in

Chapter 5.
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5. PROGRAM PROTON

5.0 INTRODUCTION

A FORTRAN computer program is available which accomodates two-dimen-

sional heat and soil-water flow models (Chapters 2 and 3) as coupled by

an isothermal phase change model (Chapter 4). The program can be used to

analyze two-dimensional freezing/thawing problems which have sufficient

known information to supply the necessary modeling parameters, boundary

conditions, and initial conditions.

Because of the sophistication of the two-dimensional phase change

model and the data requirements needed to properly represent inhomogeneity ri

of the system, boundary conditions, and other complexities, a special data

input program is developed in order to aid the model user. This general

purpose data preparation program, PROTO0, develops the data input file to

be used directly by the two-dimensional phase change program.

In this chapter, the PROTOO program will be reviewed in detail. The

actual CRT screen pages will be displayed which show the data entry prompts

in their respective order of appearance. Also shown on the CRT screen

pages are the computer program variable names associated to each prompt in '.

order to aid in understanding the FORTRAN code.

5.1 MODELING APPROACH

Heat and Soil-Water Flow

Chapters 2 and 3 provide the details of the mathematical models used

to approximate the thermal and soil-water effects in two-dimensional problems.

The analyst initially discretizes the problem geometry (two-dimensional

domain) into a collection of triangle finite elements (Fig. 5.1). The

computer model further subdivides these triangles into nodal domains such

as shown in Fig. 5.2. The collection of nodal domains forms a control volume

for each nodal point (Fig. 5.3). The computer model then balances the
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FIG. 5.1. DISCRETIZING THE DOMAIN Q INTO FINITE ELEMENTS
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heat and soil-water flow over each nodal control volume using straight-line

interpolation of temperature and soil-water energy head to compute the

corresponding rates of flow. This straight-line interpolation function is

shown graphically in Fig. 5.4.

Phase Change

Chapter 4 describes the isothermal phase change algorithm used to

approximate the freezing and thawing of soil-water. This algorithm is

based upon the "lumped-mass" control volume shown in Fig. 5.5 (which

conforms geometrically to the control volume used to balance heat and soil-

water flow). Figure 5.6 illustrates the budget used for each nodal control

volume which accounts for the residual water content (unavailable for

freezing), the remaining water content available for freezing, and the ice

content. During phase change, the nodal temperature is defined to equal -'"-

the freezing point depression (usually O°C).

5.2 MODELING PARAMETERS

The parameters needed for the computer model fall into 3 categories:

A h l a
(i) heat flow parameters

(ii) soil-water flow parameters...

(iii) phase change parameters

Heat Flow Parameters

Thermal conductivities and heat capacities are required to model heat

flow. These parameters can be usually developed from published formulas,

or obtained from charts and tables.

Soil-Water Flow Parameters

The soil-water flow model requires information regarding the coefficient

and exponent used in the Gardner's function (see chapter 4) relationships

for hydraulic conductivity and water content as related to pore pressure.
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FIG. 5.5. LUMPED MASS CONTROL VOLUME
(USED FOR ICE CONTENT BALANCE)

It WATER CO ENT AVAILABLE

R SIDUAL ER CONTENT,
-~ 6 (UNAVAIL E FOR

FIG. 5.6. WATER CONTENT BUDGET FOR NODEj
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Phase Change Parameters

The volumetric latent heat of fusion and freezing point depression are

defined by the program user.

Parameter Groups

Rather than enter the several parameters for each finite element,

parameter groupings are used to combine similar properties. Two types of

groupings are used; namely, element parameter groups and nodal parameter

groups.

-Element parameter groups include the conduction parameter

data. This enables a better description of conduction ,

values used to compute flow rates across control volume

boundaries.

-Nodal parameter groups include the capacitance parameter

data. This enables the program user to best define those

parameters which are averaged over the control volume

area (e.g., heat capacity).

Figure 5.7 demonstrates the flow balance models used, and where

the conduction and capacitance parameters are assumed to apply.

5.3 MODELING RESULTS

Nodal Values

The computed results provide nodal point values of temperature, volu-

metric water content, and volumetric ice content produced at time intervals

specified by the program user. A special feature afforded by the program is

the ability to also print the previous timestep computed results (along with

the current modeling results) in order to compare the change in nodal values

of several variables during the recent timestep advancement.
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Freezing Front Interpretation

Because the ice content values are specified at nodal points, and due to

the mass-lumping budget used for the phase change algorithm (see Fig. 5.6),

interpretation of the nodal ice content values are required in order to locate

the freezing front (i.e., the line separating the frozen soil from unfrozen

soil). Similarly, the temperature values require interpretation in order to

locate the 0°C isotherm (freezing front) at the boundary between the frozen
.7.

and unfrozen soil regions. The interpretation effort required is directly

related to the size of the finite elements used. Large triangular elements

necessarily result in large control volume dimensions associated to each

nodal point (see Figs. 5.2 and 5.3).

The usual interpretation procedure is to simply assume that the volume

of ice estimated to exist in a nodal control volume exists as a single piece,

and is located to the side of the control volume which has frozen.

This interpretation can be illustrated in terms of a one-dimensional

problem involving rectangular-shaped finite elements. Figure 5.8a shows

a nodal point control volume which is initiating freezing of available soil-

water. The most recent timestep only evolved enough heat to freeze 10-

percent of the soil-water available for phase change. Due to the lumped- .,-

mass model, the entire nodal control volume is associated with the nodal

point value; hence, the nodal values of temperature and ice content indicate

the freezing point depression and 10-percent frozen soil-water, respectively.

Thus this information must be interpreted to indicate that the 10-percent

frozen available soil-water is in one-piece and located as shown in Fig. 5.8a.

Figure 5.8b illustrates the same control volume with 60-percent of the

available soil-water frozen. Figure 5.8c illustrates a two-dimensional

control volume with 60-percent of the available soil-water frozen.
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FIG. 5.8c. 60-PERCENT FROZEN CONTROL VOLUME (TRIANGLE ELEMENTS)
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5.4 THE TWO-DIMENSIONAL, PHASE CHANGE PROGRAM SYSTEM

The two-dimensional, coupled heat and soil-water flow, with an isothermal

phase change approximation computer model is available as the FROST2X series

of programs where currently four versions are available (Table 5.1).

Similarly, the PROTO0 program has been extended to serve special purpose

problems where the problem geometry is of a typical character. For example,

PROTO enables for a quick data file preparation for roadway embankment

problems where the interior nodal points and finite elements are developed

by the program based on the entry of a few critical geometric coordinates of

the problem boundary and locations of regional homogeneity (i.e., identical

parameters for heat and soil-water flow).

It is noted that by considering the data entry requirements used in

PROTO0, the engineer can prepare special purpose data file preparation codes

which are compatible with the FROST2X series, significantly reducing the

data entry requirements associated with the PROTO0 general purpose code.

5.5 PROTO0 DATA REQUIREMENTS

The data entry requirements associated with PROTO0 fall into four broad

categories. These data groupings are illustrated in Fig. 5. 9.

V..-4A
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TABLE 5.1 PROGRAM FROST2X DESCRIPTIONS

PROGRAM DESCRIPTION

FROST2A Base Development Version of FROST2X Series.

FROST2B Two-Dimensional Heat and Soil-Water Flow

Model With Isothermal Phase Change Model.

Accomodates Heterogeneous But Isotropic

Soil Systems. Includes an Apparent Heat

Capacity During Phase Change Compatible

With PROTO0 For Data File Preparation.

FROST2C Extends FROST2B To Include Anisotropic Soil-

Water Flow.

FROST2D Extends FROST2C To Include Vertical Frost

Heave and Overburden Effects. Compatible

With PROTOl For Data File Preparation of

Roadway Embankment Problems

TABLE 5.2 SUBROUTINE TABULATION

PROGRAM

FROST2B Main, Indata, Bcsine, Trans, Phase,

Output, Presol, Comb, Finsol.

FROST2D Main, Indata, Bcsine, Trans, Phase,

Output, Presol, Comb, Finsol, Over. . %

Note: The PROTO0 program presented in this chapter is compatible with
FROST2B.
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* MODEL CONTROL DATA
nodal domain integration mass lumping factor
timestep
time between global matrix regeneration
time of simulation
time between output of results
model selection:

heat and soil-water flow
heat flow
soil-water flow
include isothermal phase change

thermal parameters of water and ice
number of nodes
number of temperature boundary condition nodes
number of pore pressure boundary condition nodes
number of triangle finite elements

* FINITE ELEMENT PARAMETER GROUPS

thermal conductivity of soil %
heat capacity of soil
saturated hydraulic conductivity of soil
exponent in Gardner's hydraulic conductivity
coefficient in Gardner's hydraulic conductivity
hydraulic conductivity ice content correction factor (exponent)

* NODAL POINT PARAMETER GROUPS
soil porosity A
exponent in Gardner's water content
coefficient in Gardner's water content
frozen soil residual water content
heat capacity of control volume

" FINITE ELEMENT NODE NUMBERS AND (x,y) COORDINATE DATA

NODAL POINT INITIAL CONDITIONS
temperature
soil-water pore pressure head
ice content

" TEMPERATURE BOUNDARY CONDITIONS
node number
maximum temperature
minimum temperature
sine period
phase shift ,'

* SOIL-WATER PORE PRESSURE BOUNDARY CONDITIONS
node number
maximum pore pressure head
minimum pore pressure head
sine period
phase shift

FIG. 5.9. PROGRAM FROST2B DATA REQUIREMENTS
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S.6 PROTOO DATA ENTRY

Program PROTOO prompts the model user for all data entries. In the

following, the data entry prompts are shown in their order of appearance.

Included with the prompts are the associated PROTOO variable names. It

is noted that several of the prompts include suggested parameter values

(for typical soil-water phase change problems), and the range of values

allowed for use with program FROST2B.
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WITH AND WITHOUT PHASE CHANGE

DEVELOPED AT
UNIVERSITY OF CALIFORNIAP IRVINE.

PRINCIPAL INVESTIGATOR: GARY L. GUYMON
- PROGRAM DEVELOPMENT.' TED V. HROMADKA

VERSION DATE: APRIL, 1982
::::ENTER A 113 TO CONTINUE:..............................

ENTER PROGRAM PROCESS NUMBER: KP
I = CREATE A NEW DATA BANK KP
21 = CONTINUE CFkATING A DATA BANK
3 = EDIT AN EXISTING DATA BANK~
4 =EXIT PROGRAM EPROTOOAJ
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1.NO MORE THAN 90 NODAL POINTS.

2.OMR HN150 TRIANGULAR FINITE ELEMENTS.

3.ALL COORDINATES ARE IN FIRST QUADRANT.
4ALL NoDAL POi NTS A~ UBRDSQETAL

4.ALL ENLENTS AREE NUMBERED SQUENTIALLY O
FRNUMBER 1.

5.ATI ELAMNDTH R NMSTE NOT EXCFED L 1 RO

(BANDWIDTH = MAXIMUM ARITHMETIC DIFFERENCE BETWEEN V
ANY FINITE ELEMENT NODAL NIglke&RS, + 1)

:::ENTER A [I] TO CNIU::..............................

........................................................................ ...........

3NE NOA DDOMIINTG NGRAIN MASLUPN FCO: NT
1000NOA IOM NEIRATED PINIT DIFFERENCEET

(ALLOWABLE LUESN FACOFRE TENUEIA METOD ANARE:00

.......................... , . .................... ............ .............................

(CR. A S-NIL SON TIM DA NC M N M T O IS S E ORE

10EAT TRNSO TEODEL D FULLYIMTEiCITTER AVACEENE
(ETHODAL ISUE FORE BELTE C13ANP~ MODEL00)

......................... .................. ....................

INTE TISMTEI MOITDE AL(HEURMAL AN SILMOS
PARAMETERCSO RE E CADSANCET MEOR O AS USEC D FOR
DUATINOME THISPOR DOELURAT-IONLIOF TIME ISVCALEET
MTHD USATE FRD' AND ISTk EXRSFD~ iNUISOFEHOURS

I .5

ENTER UPDATE PERIOD (HOURS): UPDAT
(SMALLEST ALLOWABLE VALUE IS 1 0.100000)
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EXPRESSED IN UNITS OF DAYS

ENTER LENGTH OF SIMULATION (DAYS): ENSIM
(SMALLEST ALLOWABLE VALUE IS C (.0041673)

COMPUTER SOLUTIONS ARE PRINTED ACCORDING TO A USER
SPECIFIED SIMULATION INTERVAL.THIS OUTPUT TIME
INTERVAL IS EXPRESSED IN UNITS OF DAYS

ENTER TIME INTERVAL BETWEEN COMPUTER OUTPUTS (DAYS): OUT
(SMALLEST ALLOWABLE VALUE IS c 0.004167])
(LARGEST ALLOWABLE VALUE IS r 2.o0oo0 )

%

TN_ I MAS_ .UMPING T ACTOR 0 1000 .00 (IN PUT E X M P E

UPDATE PERIOD = 0.100000 HOURS
LENGTH OF SIMULATION = 2.000000 DAYS
TIME INTERVAL BETWEEN COMPUTER OUTPUTS = 1.000000 DAYS -

".

:::SELECT ATA OPTION N:M8ER............... . .................................. 4"

I = ACCEPT DATA AND CONIINUE
2 D DATA IS UNACCEPTABLE REINPUT LAST SFOUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS

, ~~ 3"%



ENTER PROGRAM MODEL OPTION NUMBER: NPATHI
0 = HEAT AND MOISTURE TRANSPORT
1= HEAT TRANSPORT ONLY
2 = MOISTURE TRANSPORr ONLY

a-.'

IN THIS MODELt SOIL WATER PHASE CHANGE IS ASSUMEDTO OCCUR ISOTHERMALLY. SOIL-WATER AND ICE CONTENTS
ARE ACCOUNTED FOR BY A SIMPL. CONTFROL VOLUME r
[PUDGET KEEPING. A CONTROL VOLUME IS DEFINED FOR
EACH NODAL POINT BY THE SUMMATION OF EACH
TRIANGLE ELEMENT NODAL DOMAIN ASSOCIAIED TO
EACH NODE.

ENTER PROGRAM SOIL-MOISTURE FREEZING/lHAWING MODEL IPHASE
OPTION NUMBER:

0 = EXCLUDE ISOTHERMAL FREEZTNG/THAWING MODEL.
1 = INCLUUE ISOTHERMAL FRELZING/THAWING MODEL.
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INCLUDE FREEZING/THAWING MODEL

:::SELECT DATA OPTIONNUIE.....:...............'
1 - ACCEPT DATA AND CONTINUE
2 = DATA IS UNACCEPTABLEi REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS

- A,"

60

ENTER FREEZING POINT DEPRESSION OF WATER (C DEGREES): TFPD
NOTE: .4

ENTER C0) FOR METRIC SYSTEM
(ALLOWABLE VALUES ARE BETWEEN (-100) AND L100)

'7

ENTR REZIG OIT EPRSSONOF AER(CDEGEE), TPD" i-'.

~. .. . .. . ... *. '. ; 4 4 . . - . :\ '.



NERVOLUMETRIC 
HEAT CAPACITY 

OF 
ICEE.*cal/c*3)NOTE:ENTER 6,003J FOR METRIC SYSTEM cI

.... ............ .. . . . . . . . . . .
. . . . . . ................ 

.... .

. . .. . . . . . . ..

ENTER TOLUERMAL CEADUCAITY OF ICECEa1/hrcac. T
NOTE:ENTER [0.463 FOR METRIC SYSTEM c

ENTER THU~ E RI CON AT NT YH OF 
FUIN:(cl / r *3. 

TK
NOTE:ENTER [4.8) FOR METRIC SYSTEM

... a~S--........ ........... ................



*SPECIFIED THERMAL INFORMATION* (INPUT EXAMPLE)

THE THERMAL 
FREEZING POINT 

DEPRESSION 
OF WATER 

=0.000000 

e

HEAT CAPACITY OF WATER = 1.0000
HEAT CAPACITY OF ICE = 0o.4600
THERMAL CONDUCTIVITY OF WATER = 4.8000THERMAL CONDUCTIVITY OF ICE = 19.0000

LATENT HEAT OF FUSION = 80.000000

............................................ ,...............

:SELECT DATA OPTION NUMBER : . .... .....
1 = ACCEPT DATA AND CONTINUE
2 = DATA IS UNACCEPTABLE; REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS

'°o.

NODAL DOMAIN INTEGRATION _

MODEL PROBLEM-DEFINITION INFORMATION
--------------------------------------------------------------------------------------

FpTER NUMBER OF NODAL POINTS IN THE MODEL: NNOD
,LOWA&LE VU'LUES ARE ETWEEN C41 AND C90)........................................ .................. I.II.I............................................................................ ......'''' , . , ...... ........



ENTER NUMBER OF NODAL POINTS WITH SPECIFIED 
NNBCP

SOIL-WATER PORE PRESSURE HEAD BOUNDARY CONDITIONS:

(ALLOWABLE VALUES ARE BETWEEN [1] AND C 42))

......... .. **..................................

ENTER NUMBER OF TRIANGLE FINITE ELEMENTS IN THE MODEL: NEL
(ALLOWABLE VALUES ARE BETWEEN (23 AND [1503)

,.-.. .

NUMBER OF FINITE ELEMENTrs IN THE MODEL = 40 (INPUT EXAMPLE)
NUMBER OF NODAL POINT N TH OE =4 -
NUMBER OF NODES WITH SPECIFIED TEMPERATURE = 4
NUMBER OF NODES WITH SPECIFIED PORE PRESSURE HEAD = 2

:::SELECT DATA OPTION NUMBER..............................................
I = ACCEPT DATA AND CONTINUE
2 = DATA IS UNACCEPTABLE; REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS "".

8.-.

p...,..
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IN THIS COMPUTER MODELPFINITE ELEMENT PARAMETER
INFORMATION IS GROUPED INTO 'PARAMETER GROUPINGS* WHEREBY
THE APPROPRIATE GROUPING NUMBER IS USED TO SPECIFY

PARAMETER INFORMATION FOR EACH FINITE ELEMENT.THEREFOREP
THE USER SPECIFIES A GROUPING NUMBER RATHER THAN ENTERING
OFTEN-REPETATIVE PARAMETER DATA FOR EACH ELEMENT. UP TO
110J ELEMENT-PARAMETER GROUPINGS MAY BE DEFINED.

ENTER THE NUMBER OF ELEMENT-PARAMETER GOUPINGS: NEPG
(ALLOWABLE VALUES ARE BETWEEN [l) AND CIO])

...... ..... ...... .....

...........................

ENTER THERMAL CONDUCTIVITY OF S~iL (cal/hr.cn.c): PARELE(JI1)

ENTER VOLUMETRIC HEAT CAPACI7Y OF SOIL (cal/cm~**3): PARELECJ,2)

ENTER THE SATURATED HYDRAULIC CONDUCTIVITY OF sorL(cm/hr): PARELE(J.3)

....................................

%...



Ff

PONlENTER EXLPONE OF PORE PRESSURE HEAD IN GARDNERS PARELE(J,4)
HYDRAULIC CONDUCTIVITY FUNCTION:

ENTER HYDRAULIC CONDUCTIVITY EXPONENT ADJUSTMENT---------PARELE(J6}
FACTOR "E'

NOTE:

NOEADJUSTMENT FACTOR = 10.**(-E * ICE CONTENT) .

N 0.

ELEMENT-PARAMETER GROUPING * I (INPUT EXAMPLE)
THERMAL CONDUCTIVITY OF SOIL = 14.0000.,.-
VOLUMETRIC HEAT CAPACITY OF SOIL =0.5000 

.-SATURATED HYDRAULIC CONDUCTIVITY OF SOIL = 0.1000'.-,

MULTIPLIER OF PORE PRESSURE HEAD IN GARDNERS CONDUCTIVITY FUNCTION = 0.4000'"HYDRAULIC CONDUCTIVITY EXPONENT ADJUSTMENT FACTOR = 1.000 1

3 T ACCEPT DATA AN TERMINATE PROCESS
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SIMILAR TO THE "ELEMENT PARAMETER GROUPINGS" 
,FURTHER

PARAMETER INFORMA TION 1S DEFINED FOR 
NODAL POINTS.

THIS 'NODAL POINT PARAMETER GROUPINGO INFORMATION IS
IDENTIFIED BY A NODAL-PARAMETER GROUPING NUMBER.
THESE SETS OF PARAMETERS ARE USED TO MORE PRECISELY
DEFINE ASSUMED CONSTANT PARAMETERS ON A CONTROL
VOLUME BASIS FOR EACH NODAL POINT RATHER THAN "/..
SIMPLY AVERAGING FINITE ELEMENT PARAMETERS
FOR EACH NODAL CONTROL VOLUME.
UP TO C10] NODAL-PARAMETER GROUPINGS MAY BE DEFINED.

ENTER THE NUMBER OF NODAL-PARAMETER GROUPINGS: NNPG
(ALLOWABLE VALUES ARE BETWEEN r13 AND 103)

... ,

.%%

-°. ..

ENTER NODAL-PARAMETER GROUPING 
# I ]INFORATION:

ENTER THE SATURATED VOLUMETRIC MOISIURE 
CONTENT UF SlIL: PANO(J1

(ALLOWABLE VALUES ARE ETWEEN C0] AND Cl] cm**3/cm *3) 
.

ENTER MULTIPLIER OF PORE PRESSURE HEAD N GARDNERS PARNOD(J,2) ' 1

VOLUMETRIC MOISTURE CONTENT FUNCTION: : 

%
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ENTER EXPONENT OF PORE PRESSURE HEAD IN GARDNERS PARNOD(J3)

SOILUMTR MISTR A CALA EN F UNHSECHAONG T

UNAVAILABLE SOIL WATER IS CALLED A VOLUMETRIC
UNFROZEN WATER CUNTENr FACTOR.

ENTER THE ASSUMED VOLUMETRIC UNFROZEN WATER CONTENT PARNODJ,4)
FACTOR OF THE SOIL:
(ALLOWABLE VALUES ARE BETWEEN 103 AND 113)

ENTER THE VOLUMETRIC HEAT CAPACITY OF THE SOIL (Cal /cm**3): PARNOD(J,6)

NODALPARAMTER ROUPIG IINPTUTEXAMPLE)

EXPOET OF POR PRESUREIN _ADESM1 ECNETFNTO .000ATRDVOLUMETRIC MCAA ITUORTE COTN FSOIL 04000

:::SELECT ~ ~ ~ ~ ~ ~ ~ ~ ~ CTO IAAOTO UBR:.........................
No~~~~~ 

D~ ; A; A E E

1 -U ACCEP DTA AND CNTIU
2LIE OF DATA ISU RCESSURLE INPU LADER STUREGU NEN FUCIN 004
EX CEPT AT ANDE TRESSRMINAER ROCESTR COTNAUCIN 120 J

LT~~. I L 0 0 P

VOLUETRI UNFOZE WATR COTEN FACOR 0150

P S
F VLUETICMET APCTYOFTH SIL- .m0

............ .... .8 2



*NODAL COORDINATE INFORMATION*

ENTER NODE NUMBER r 1J INFORMATION:

ENTER X-COORDINATE OF THE NODE: DATNOD(J.1)

NOTE: X-COORDINATE MUST BE IN FIRST QUADRANT

ENTER Y-COORDINATE OF THE NODE: DATNOD(J,2)
NOTE: Y-COORDINATE MUST BE IN FIRST UUADRANT

• . • • • • .o W .,.'

ENTER NODAL-PARAMETER GROUP NUMBER: DATNOD(J,3)

(ALLOWABLE VALUES ARE BETWEEN LIJ AND C 1).

It

(IN. .T.EXAMPLE) .X-COORDINATE = 0.000

Y-COORDINATE= 40.000

NODAL-F'ARAMETER (ROUP NUMBER 1.000

:::SELECT DATA OPTION NUMBER::::::: '................
1 = ACCEPT LIATA AND CONTINUE
2 = DATA IS UNACCEPTABLE; REINPUT LAST SEOUENCE
3 = ACCEPT DATA AND IERMINATE PROCESS

.,.
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ENTER PROGRAM PROCESS NUMBER: KOPT No
1 = CREATE A NEW DATA BANK (CONTINUATION OF PROTOOA) ,.
2 a CONTINUE CREATING A DATA BANK (CONTINUATION OF PROTOOB)
3 - EDIT AN EXISTING DATA BANK
4 = EXIT PROGRAM [PROTOOB)

----------------------------------------------------------2===== 2=2=---2

p%.

5-,_

FTHE PROBLEM DOMAIN IS ASSUMED DISCRETIZED INTO *''
TRIANGLE-SHAPED FINITE ELEMENIS. SINCE THIS
DATA PREPARATION PROGRAM IS FOR AN ARBITRARY_
DOMAIN9 THE USER MUST ENTER ALL t-EOME7RIC r
INFORMATION INCLUDING THE PROBLEM MESH.L'i,,
EACH FINITE ELEMENT HAS 3 NODAL POINTS PTHESE
VERTEX NODAL POINTS MUST BE LISTED IN COUNTER-*-
CLOCKWISE ORDER.

:::-:ENTER A [1] 1'0 O T N ~ : : t t t: t t* t t : :' t t~ t ,: t t ,: : ,
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---- --- ---- --- ---- --- --- ---- --- ---- --- --- ---- --- --- - --- ---

ENTER ELEMENT NUMBER 1 1] INFORMATION:

ENTER THE NODE NUMBER OF THE. FIRST VERTEX: IDTELE(J,1)

ENTER THE NODE NUMBER OF 7HE SECOND VERTEX: IDTELE(J.2)

ENTER THE NODE NUMBER OF THE THIRD VERTEX: DE (J3

ENTER ELEMENT-PARAMETER GROUP NUMBER: DEEJ4

NEMN NUMBER OFTH IRT VETX

NODE NUMBER OF THE FICRND VE.RTEX I
NODE NUMBER OF THE THIRD VERTEX = 2

ELEMENT-PARAMETER GROUP NUMBER - 1

:::SELECT DATA UPTION NME::: ...............
1 = ACCEPT DATA AND CONTINUE
21 = DATA IS UNACCEPTABLE; REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS
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FENTER 
INITIAL TEMPERATURE 

P N A T OE PR SS R I 

T LD J)'--

4.

AN E INITIAL V OLUMETRC ICE CONTENT AH NODE AS IE L()."

REQUESTED:

ENTER INITIAL TEMPERATURE AT NODE NE1TOLD(J)

ENTER INITIAL PORE PRESSURE HEAD ATr NODE I POLD(J

ENTER INITIAL VOLUMETRIC ICE CONTENT AT NODE :1XICEOL(J)

INITIAL PRESSURE HEAD OF THE NODE = -0.0000
INITIAL VOLUMETRIC ICE CONTENT OF THE NODE = 0.0000

:::SELECT DATA OPTION NUMBER:...............................................
1 = ACCEPT DATA AND CONTINUE
2 = DATA IS UNACCEPTABLE; REINPUT LAST SEQUENCE

3 = ACCEPT DATA AND TERMINATE PROCESS
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NOTEAL *SPECIFIED BOUNDARY CONDITION TEFORRATIOE ND

PORE-PRESSURE HEAD) ARE EXPRESSED IN TERMS OF A
SINUSOIDAL VARIATION.

ENTE NOE NUBERWITHSPEIFIE THRMALBOUDARYCONITIO NB T(J
AND~~~~~~~4 SPCF HPEPRAUEFNTO)

ENE OENME IHSEIIDTHERA BOUNDARY CONDITION NACTNODE-IA N D B O E C F T H T E P R T R F U C I O )

A 

X

...................... ............ ........................................................... ........................

ENTER THEMU EPER TUR E OFN THE SINE CURVE DESCRIBING BCT(J,2) . -

THETMAUE BOUNDARY CONDITION AT NODE: 1*
................. .......................

ENTER THE PHASE SHIFT(HOURS) OF THE SINE CURVE. BCT(J,4) 5 'a

DESCRIBING THE TEMPERATURE BOUNDARY CONDITION Ar NUEE: 1

THREE POSSIBLE VALUES CAN BE USED ra DESCRIBED THE
SHIFTING SINE CURVE:
i.ENTERING A *01 VALUE: THIS IS A STANDARD SINE CURVE. '-

2.ENTERING A 'POSITIVE' VALUE: THIS SINE CURVE IS BEING SHIFTED BACKWARDF
BY THAT ENTERED VALUEP FROM THE STANDARD SINE CURVE.

3.ENTERING A *NEGATIVE* VALUE: THIS SINE CURVE IS BEING SHIFTED FORWARD,
BY THAT ENTERED VALUE, FROM THE STANDARD SINE CURVE.

- - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- . . -



MAXIMUM TEMPERATURE ON THE SINE CURVE - -5.0000
MINIMUM TEMPERATURE ON THE SINE CURVE - -5.0000

THE PHASE SHIFT OF THE SINE 
CURVE = 0.0000 

E ,A.L.E,

---- --------------------------------------------------------------------

I..,-

::SELECT DATA OPTIONU
1 - ACCEPT DATA AND CONTINUE
2 =DATA IS UNACCEPTABLE; REINPUT LAST SEQUENCE
3 - ACCEPT DATA AND TERMINATE PROCESS

4**.,.'

?.. .%

ENTER NODE NUMBER WITH SPECIFIED SOIL-MOISTURE NBCP(J)
BOUNDARY CONDITION (AND DEFINE THE PORE-PRESSURE HEAD
FUNCTION AT THAT NODAL POINT): '4.

..... .... ............ .......

ENTER MAXIMUM PORE PRESSURE HEAD ON THE SINE CURVE BCP(J,1)
DESCRIBING THE BOUNDARY CONDITION AT NODE : 41

ENTER MINIMUM PORE PRESSURE HEAD ON THE SINE CURVE BCP(J,2)
DESCRIBING THE BOUNDARY CONDITION AT NODE : 41 r.
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ENTER THE PHASE SHIFT(HOURS) OF THE SINE CURVE
DESCRIBING THE PORE PRESSURE HEAD BOUNDARY CONDITION AT NODE :41

THREE POSSIBLE VALUES CAN BE USED TO DESCRIBED THE BCP(J.4)
SHIFTING SINE CURVE
I.ENTERING A *0 VALUE: THIS IS A STANDARD SINE CURVE.
2.ENTERING A 'POSITIVE' VALUE: THIS SINE CURVE IS BEING SHIFTED BACKWARD,

BY THAT ENTERED VALUEP FROM THE STANDARDI SINE CURVE.
3.ENTERING A 'NEGATIVE' VALUE: THIS SINE CURVE IS BEING SHIFTED FORWARD9

DY THAT ENTERED VALUE, FROM THE STANDARD SINE CURVE.

MAXIMUMBRWT P lFE PORE PRESSURE HEAD ON TH1 SINEPU CURVAMPLE)0

MINIMUM PORE PRESSURE HEAD ON THE SINE CURVE =-10.0000

THEMU PHASE PSUIR OTHEADO SINE r -10.0000

---------------------------------------------------------------------------

:::SELECT DATA OPTION NME..........................

1 ACCEPT DATA AND CONTINUE
2 = DATA IS UNACCEPTABLE; REINPUT LAST SEQUENCE
3 = ACCEPT DATA AND TERMINATE PROCESS
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5.7 APPLICATIONS

Three example problems are presented which illustrate the data file

development by use of PROTOO, and the performance of the program FROST2B.

Heat Flow Application

A one-dimensional domain of unit length is discretized by 8 triangle

finite elements as shown in Fig. 5.10a. At time t=O, the temperature is

given by T(x)=l. Boundary conditions are given at x=O and x=l by

T(x=O)=T(x=l)=O. Using a normalized timestep of t=0.01, the computed

results from FROST2B and the exact solution (Myers, 1971) are shown in

Fig. 5.10b. The data file prepared by PROTO0 is shown in Fig. 5.11.

Soil-Water Flow Application

A vertical homogeneous soil column is discretized by triangle finite

elements as shown in Fig. 5.12a. A water table forms the base of a steady

state 45-degree pore-pressure head profile through the vertical column.

The column is insulated on both sides. The top of the column is suddenly

flooded at a uniform depth of 2 cm. of water. The FROST2B modeling results

are shown in Fig. 5.12b. The data file developed from PROTO0 is shown in

Fig. 5.13.

Phase Change Model Application

The vertical column of Fig. 5.12a is now considered with respect to

soil- water freezing. Initially, the column is at a uniform temperature of

0
+0.1 C. The top of the column is suddenly set at a constant temperature of

-50C. The FROST2B modeling results are shown in Fig. 5.14. The data file

developed by PROTO0 is shown in Fig. 5,15.
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1.0 .I

7 9

10.25

INSULATED

FIG. 5. 10a HEAT FLOW EXAMPLE PROBLEM

T=O

LEGEND

Q8A SOLUTION FROM
-. FROST2B

I-T = NORMALIZED TIME

wQ 06 N= EXACT SOLUTION

0.4 :'2

w
I-,,,. -",.

0.4

00 0.2 0.4 0.6 0,8 1.0

FIG. 5.10b HEAT FLOW EXAMPLE PROBLEM SOLUTION
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1000.000
0.01000 1 100 10

1011 0 1

0.00000 1.00000 1.00000 1.00000 1.00000 1.00000
4 0
10 8 1 1

0.40000001 0.00400000 1.20000005 0.15000001 1.00000000

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
1.00000000 1.00000000 0.10000000 1,20000005 0.40000001 1.00000000

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000 0.25000 1.0
0.00000 0.00000 1.0
0.25000 0.25000 1.0
0.25000 0.00000 J.0
0.50000 0.25000 1.0
0.50000 0.00000 1.0
0.75000 0.25000 1.0
0.75000 0.00000 1.0
1.00000 0.25000 JO
1.00000 0.00000 1.0
0.00000 0.00000 0.0
0.00000 0.00000 0.0
1 2 3 1
3 2 4 1
4 6 3 1
3 6 5 1
5 6 7 1
7 6 8 1
8 10 7 1
7 10 9 1
9 11 10 1
0 0 0 0
0 0 0 0
1.00000 -10.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -iO.00000 0.00000
1.00000 -iO.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -iO.O0000 0.00000'-..

0.00000 0.00000 0.00000 .'

FIG. 5.11. PROTOO DATA FILE FOR HEAT FLOW PROBLEM (Iof 2)
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0.00000 0.00000 0.00000
1 0.0000 0.0000 48.0000 0.00000
2 0.0000 0.0000 48.0000 0°00000
9 0.0000 0.0000 480000 0000000

10 00000 0.0000 48.0000 000000
0 0.0000 0.0000 0.0000 0.00000
0 0.0000 6.0000 0.0000 0.000001 1 1 1 1

1 1 1 1 1

1 1 0 0 1
1 10 8 10 4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 10

:-

.

FIG. 5.11. (20of 2)'
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® I

) "
i

0@@@-1-

2 WATER TABLE

10 cm

FIG. 5.12a SOIL-WATER FLOW EXAMPLE PROBLEM

SOIL-WATER PORE PRESSURE (cm)

-35 -30 -20 0 0 1
LEGEND

A T TIME (HOURS)

0
oE

20 ,

I

30

35

FIG. 5.12b SOIL-WATER FLOW EXAMPLE PROBLEM SOLUTION
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1000.000
0.10000 1 460 60

2 0 1

0.00000 1.00000 0.46000 4.80000 19.00000 80.00000
0 6
24 28 1 I

0.41600001 0.00000607 1.73600000 0.15000001 0.20000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
5.00000000 0.20000000 0.06250000 2.67400000 0.00000105 12.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000 0.00000 1.0
5.00000 0.00000 1.0
10.00000 0.00000 1.0
0.00000 5.00000 1.0
5.00000 5.00000 1.0

10.00000 5.00000 1.0
0.00000 10.00000 1.0
5.00000 10.00000 1.()
10.00000 10.00000 1.0
0.00000 15.00000 1.0
5.00000 15.00000 1.0
10.00000 15.00000 i.0
0.00000 20.00000 1.0
5.00000 20.00000 i.O
10.00000 20.00000 i.O
0.00000 25.00000 i.0
5.00000 25.00000 1.0
10.00000 25.00000 1.00.00000 30.00000 1.0
5.00000 30.00000 i.O
10.00000 30.00000 1.0
0.00000 35.00000 1.0
5.00000 35.00000 t.0
10.00000 35.00000 i.0

0.00000 0.00000 0.0
o.ooooo 0.00000 0.0
1 5 4 i

5 4 1 1
5 2 3 1
3 6 t 1
4 5 8 1

8 7 4 1
8 5 6 1
6 9 8 1
7 8 i -

11 10 7 1
11 8 9 1
9 12 11 1 ...

10 11 14 1

V_
FIG. 5.13. PROTOO DATA FILE FOR SOIL-WATER FLOW PROBLEM

(I of 3)
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14 13 16 1
14 11 12 1
12 15 14 1
13 14 17 1
17 16 13 1
17 14 15 1
15 18 17 1
16 17 20 1
20 19 16 1
20 17 18 1
18 21 20 1 :
19 20 23 1
23 22 19 1
23 20 21 1
21 24 23 1

0 0 0 0
0 0 0 0
1.00000 0.00000 0.00000
1.00000 0.00000 0.00000
1.00000 0.00000 0.00000
1.00000 -5.00000 0.00000
1.00000 -5.00000 0.00000
1.00000 -5.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -10.00000 0.00000
1.00000 -10.00000 0.00000 q

1.00000 -15.00000 0.00000
1.00000 -15.00000 0.00000
1.00000 -15.00000 0.00000
1.00000 -20.00000 0.00000
1.00000 -20.00000 0.00000
1.00000 -20.00000 0.00000 ,I,,
1.00000 -2000000 0,00000
1.00000 -25.00000 0.00000
1.00000 -25.00000 0.00000
1.00000 -30.00000 0.00000
1.00000 -30.00000 0.00000
1.00000 -30.00000 0.00000
1.00000 -35.00000 0.00000
1.00000 -35.00000 0.00000
1.00000 -35.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

0 0.0000 0.0000 0.0000 0.000000 0.0000 0.0000 0.0000 0.00000
0 0.0000 0.0000 40.0000 0.00000
1 0.0000 0.0000 48.0000 0.00000
3 0.0000 0.0000 48.0000 0.00000
32 0.0000 0.0000 48.0000 0.00000

22 2.0000 2.0000 48.0000 0.00000
24 2.0000 2.0000 48.0000 0.00000,
24 2.0000 2.0000 48.0000 0.00000 "

0 0.0000 0.0000 0.0000 0.00000 ,.
FIG 5.13. (2 of 3)
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0 0.0000 0,0000 000000 0.00000
1 1 1 1 1
1 1 1 1 1

1 1 0 0 1
1 24 28 24 0
6 0 0 0 0
0 0 0 0 0
0 0 0 0 24

o,'

C..

-41

FIG. 5.13. (3 of 3)
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(PORE PRESSURE)

c m- H2 0) 0

ICE CONTENT
-,,(c,,PcwW)

TEMPERATURE
(0C) 0.

c,

" k 0

-k

- - I%

15-"

LEGEND25

@ :NODE 23 (SEE FIG. 5.12a)x
a..

(150 TIME (50 DAY:- O. ,. p'
50

FIG. 5.14 PHASE CHANGE PROBLEM SOLUTION
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1000.000
0.10000 1 100 10

0 1 1
0.00000 1.00000 0.46000 4.80000 19.00000 80.00000

6 3
24 28 1 1

0.41600001 0.00000607 1.73600000 0.15000001 0.20000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
5.00000000 0.20000000 0.06250000 2.67400000 0.00000105 12.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000 0.00000 10

5.00000 000000 1.0
10000000 0.00000 1.0
0.00000 5.00000 1.0
5.00000 5.00000 1.0
10.00000 5.00000 1.0
0.00000 10.00000 1.0
5.00000 10.00000 1.0
10.00000 10.00000 1.0
0.00000 15.00000 1.0
5.00000 15.00000 1.0

10.00000 15.00000 1.0
0.00000 20.00000 1.0
5.00000 20.00000 1.0

10.00000 20.00000 1.0
0.00000 25.00000 1.0
5.00000 25.00000 1.0

10.00000 25.00000 1.0
0.00000 30.00000 1.0
5.00000 30.00000 1.0
10.00000 30.00000 1.0
0.00000 35.00000 1.0
5.00000 35.00000 1.0
10.00000 35.00000 1.0
0.00000 0.00000 0.0
0.00000 0.00000 0.0

1 5 4 1
5 4 1 1
5 2 3 1
3 6 5 1
4 5 8 1
8 7 4 1
8 5 6 1
6 9 8 1
7 8 11 1

11 10 7 1
11 8 9 1 ''4

9 12 11 1
10 11 14 1

FIG. 5.15. PROTO0 DATA FILE FOR PHASE CHANGE PROBLEM (l of 3)
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14 13 16 1
14 11 12 1
12 15 14 1
13 14 17 1
17 16 13 1
17 14 15 1
15 18 17 1
16 17 20 1
20 19 16 1
20 17 18 1
18 21 20 1
19 20 23 1
23 22 19 1
23 20 21 1
21 24 23 1
0 0 0 0
0 0 0 0
0.10000 0.00000 0.00000
0.10000 0.00000 0.00000
0.10000 0.00000 0.00000
0.10000 -5.00000 0.00000
0.10000 -5.00000 0.00000
0.10000 -5.00000 0.00000
0.10000 -10.00000 0.00000
0.10000 -10.00000 0.00000
0.10000 -10.00000 0.00000
0.10000 -15.00000 0.00000
0.10000 -15.00000 0.00000
0.10000 -15.00000 0.00000
0.10000 -20.00000 0.00000
0.10000 -20.00000 0.00000
0.10000 -20.00000 0.00000
0.10000 -20.00000 0.00000
0.10000 -25,00000 0.00000
0.10000 -25,00000 0.00000
0.10000 -30.00000 0.00000
0.10000 -30.00000 0.00000
0.10000 -30.00000 0.00000
0.10000 -35.00000 0.00000
0.10000 -35.00000 0.00000
0.10000 -35.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
1 0.1000 0.1000 48.0000 0.00000
2 0.1000 0.1000 48.0000 0.00000
3 0.1000 0.1000 48.0000 0.00000

22 -5.0000 -5.0000 48.0000 0.00000
23 -5.0000 -5.0000 48.0000 0.00000
24 -5.0000 -5.0000 48.0000 0.00000
0 0.0000 0.0000 0.0000 0.00000
0 0.0000 0.0000 0.0000 0.00000
1 0.0000 0.0000 48.0000 0.00000
2 0.0000 0.0000 48.0000 0.00000 r
3 0.0000 0.0000 48.0000 0.00000
0 0.0000 0.0000 0.0000 0.00000

FIG. 5.15. (2 of 3)
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0 0,0000 0.0000 0,0000 0,00000
I1

1 0 1
1 24 28 24 6
3 0 0 0 0
0 0 0 0 0
0 0 0 0 24
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APPENDIX A: NDI Model For Radial Coordinatea

A.O INTRODUCTION

In chapter 3 is presented the development of a nodal domain integration

(NOI) model of three-dimensional heat conduction based on a tetrahedron finite

element. From this numerical model, the finite difference, subdomain integra-

tion and Galerkin finite element methods, and an infinity of finite element

mass-lumped matrix models are unified into a single numerical statement.

As an extension, the NDI technique is now applied to the

radial-coordinate, finite element. It is shown that the Galerkin finite

element, subdomain integration, and an integrated finite-difference numerical

models are obtained by the appropriate specification of a single parameter in

the resulting NDI statement. . Thus, all three numerical approaches are unified

into one numerical statement similar in form to a Galerkin finite element

matrix system. The extension of the NDI technique to developing unified cylin-

drical and spherical coordinate models follows from the derived radial coordinate

model and the NDI three-dimensional tetrahedron finite element model of

chapter 3.

The purpose of this section is three-fold. The first objective is to present

a basic description of the NDI technique as applied to the class of partial

differential equations generally encountered in the theory of diffusion and

heat conduction. Sufficient set definitions and integral manipulations are

provided in order that the extensions of the results to cylindrical and spherical

coordinate systems are direct. The theoretical foundations of this numerical

technique are based on the subdomain version of the finite element weighted

residuals approach, and incorporate the mass-lumping techniques used in some

finite element approaches. The development closely follows the presentation of

Chapters 2 and 3.
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The second objective is to develop the NDI numerical statement which

represents the finite element Galerkin statement, subdomain integration

numerical statement, and integrated finite-difference control volume statement,

by the specification of a single parameter in the resulting radial element

matrix system.

A third objective is to use the unified NOI formulation to gain insight

as to the performance of the several well-known domain models in the approxi-

mation of radially symmetric heat conduction processes. Since the NDI model

represents each of the most popular numerical models as point values of the

NDI approximation statement, the same computer code can be used for each

numerical analog, as well as an arbitrary finite element mass-lumping scheme.

A.l NDI MODEL DEVELOPMENT

The partial differential equation describing radially symmetric heat

conduction in an isotropic homogeneous medium is given by

- R K : RS- (1)
aR L. 3R at

where K is the thermal conductivity; S is the heat capacity; R is the radial r

coordinate; 0 is temperature; and t is time. ".,

The finite element technique apnroximately solves the governing equation

on a finite element discretization of the domain (Zienkiewicz, 1977). The

integrated finite-difference method uses a control volume discretization-

(Spalding, 1972).

The nodal domain integration approach partitions a finite element into . ..

smaller "nodal domains" which are geometrically defined as the intersection

of the finite elements and control volumes. The utility of this further

partitioning of the finite element is that an integrated finite-difference or
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a subdomain integration analog can be conveniently written in terms of a matrix

system similar to the Galerkin finite element matrix system. Additionally,

flux type boundary conditions can be accommodated on the problem domain

boundary without the need of special equations or finite-difference approximations.

The following set definitions of subdomains (control-volumes), finite elements,

and nodal domains will be used to develop the NOI finite element matrix system.

Consider the partial differential operator relationship

A($) - f; (xy) c , a - nUr (2)

defined on global domain 1 with boundary condition types of Oirichlet or
-.%

Neumann specified on global boundary r. A n-nodal point distribution can

be defined in Q2 with arbitrary density such that an approximation 0 for *

is defined in Q2 by

n L

.1 N.(X,Y)Oj; (x.y) C n (3)

where N (x,y) are linearly independent global shape functions and Oj are

assumed values of the state variable, 0, at nodal point j. In (3) it is

assumed that except for a set of Lebesque measure zero

lim = lim - o, (x,y) E (4)

n- max I(x,y 3 ) , (xk yk)IO

A closed connected spatial subset R is defined for each nodal point i such

that .

n
1 = .Rj (5)

j=1 ."
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The sets R are generally called control-volums or subdorins, and usually

are accmpanied with additional requirements that

(x1 . yj)cR; (x1 .Yj) Rk, J#k (6)

and

R RJU 8e (7)

where (xj, yj) are the spatial coordinates of node J and Bj is the boundary

of R It is assumed that every subdomain is disjoint except along sharedI.

boundaries, i.e.

RjnRk a k  )8)

The subdomain method of the finite element weighted residuals approach

approximates (2) by solving the n equations

I (A() -f) wj dA 0 0, j =1,2,***,n (9)

where

1, (x,y) E RC
wj -(10).

0, (x.y) R1

A second cover of 0 is defined by the finite element method with

S, U S1e  (11)

e.e e ewhere is the closure of finite element domain Q and its boundary r

106 1
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Let S he Oet set of subscripts defined by

sa, 5= uicn R i # (4)) (12)
Sm

that is. Se is simply the set of nodes associated to Ce.

Then a set of nodal domains nje is defined for each finite element domain fl

by (Fig. A.1)

oe -oe R n , jESe (13)

The subdomain method of weighted residuals as expressed by (9) can be

rewritten in terms of the subdomain cover of il by

(A(s) - f) wj dA - (A() - f) dA (14)

~j

With respect to the finite element discretization of si,

(A(.) - f) dA 2 (A($) -f) dA (15)

where for each finite element fie a matrix system is given by generatin"

for each nodal point j cS e

IeeI. e

From the above subset definitions and set covers of 17, application of the "

usual subdomain method to the governing partial differential operation of

(2) is accomplished by an integration of the governing equations over the

nodal domains interior of each finite element, resulting in a finite element

matrix system similar to that determined by the Galerkin finite element method.
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A.2 NDI INTEGRATION

In this section, the governing heat flow equation is integrated over the

several nodal domains associated to a finite element nO. This approach is

simply the subdomain integration weighted residual method as applied to a sub-

domain or control volume, except that the approximation error is averaged

over the nodal domains interior of the subdomain. These nodal domain contri-

butions can then be reassembled into matrix form for each element ne . Using 4
the previous set notation, the operator relationship for the radially-symmetric

heat conduction model of (1) is

A(O) -f RK RS (17)
aR aR at

whereby substituting (17) into (16) gives an element matrix system for Oe 4'

IL RK - RS-} dA 0} cSe3R R at

e

Expanding (18),

ds + RK ds{ RK. } 
ann an." ".

r.er e  e r• ,erre P!e
j'nr O

- RS -- dA E Se  (19) -.
ate

where the first term of (19) cancels due to flux contributions from con-

tiguous finite elements or satisfies Neumann boundary conditions on qlobal

boundary r; and where (n,s) are normal and tangential vector components on

B r and re.
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In order to evaluate the integration expressions of (19), definitions

of the finite elamnt and subdomain covers of global domain sl are necessary.

The finite element cover f of n Is assufd defined by the

a, ((x.y)IO- r f R < r2

n2 ((x,y)lr. R < rd}

(20)

n n - ( (x,y)lr,_. I R .! r. L) 4'

where rI Is the radial coordinate of nod i ; and

n - ((xy)l0 I R . LI.

The subdomain cover Rj of n is assumed defined by

,. ...

Rf- ((x,y)lO - 2r < 2R (r + r2

R -(x,y)(r, + r2 ) * 2R < (r * r,)}

-2T,* (21)

R {(xy)!(rn.I + r.) s 2R 2L)

n-i

Therefore, the nodal domin cover , of finite eiewent P! is defined

by
0e e "

• e U e+1 2)"'
~~,.* (2?)

where (Fig. A.1)

Qe ((x.y)r - R (r + r )/2i
e e e ' e +

(23)
Ql+ -{(x~y))(r e + re )12< R < re+ '".
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0'3

(1)-NODALI

(3) DOMAIN
ASSOCIATED

(4) Toa 0fRt
(SHADED)

I iR2R R4

Fig. 1. Nodal Domain Geometry

1- 2

2

Fig. 2. NDI Boundary Definitions
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Integration of the governing flow equation on each le involves the

definition and integration of the themal conductivity, K. An approach to

handling the nonlinearity problem is to approximately linearize the governing

flow equation by assuming the various parameters to be constant for small

timesteps, At. For K set to a quasi-constant value Ke in Cie during timestep At,

(19) may be rewritten for the nodal domain Pe contribution to subdomain R

e ds - RS dA J cSe  (24)

ana

Since the governing heat floW equation is radially symmetric, (24) simplifies

to (see Fig. A.2)

RKe  I RS 3 dR } Se  (25)
a~R~ fr at C(5

(2S)

This integrated relationship will be used to develop a subdomain inteqration

model in the following section.

A.3 NUMERICAL SOLUTIONS

In the derivation of the finite element integration statement of (25)

for e, no specification of the character of the state variable is assumed.

In the following, the state variable * is assumed to be adequately approximated

by linear trial function *e in each finite element ne Therefore it is assumed

that E 0. in each Q where the L. are the usual linear local

coordinates in e; and *e are nodal point values of the temperature trial

function estimate in Q. Due to the linear definition of ce in Qe, all scatial

-.-- p

p.%
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gradients of 40 are constant. Consequently, several well known domain

numerical solutions of (1) in n embodied in the finite element method of

weighted residuals result in similar numerical approximations of (1) in each

Qe. To develop these domain numerical solutions, the following description

variable is defined:

_ RK R RS (26)

Although the Galerkin method of weighted residuals used to solve (1) in

each fie is well known, its derivation of a finite element matrix system is

presented in order to developi some of the notation and simplifications used

in the subsequent determinations of the subdomain integration and integrated

finite difference analogs, and to demonstrate the use of flux-type boundary

conditions on global boundary P.

Galerkin Method of Weighted Residuals

In Qe,

L dR 0 (27)

generates a Galerkin finite element matrix system for approximation of (1)

on

Integrating by parts reduces (27) to

r fas dL 30P Lj dR =RK-L - RK- U +SR-L j dR (28)
aR 3R dR at

.,e r e ne

The first term in the expansion of (28) satisfies flux continuity between

finite elements and Neumann boundary conditions on global boundary r in a

manner similar to the NDI statement of (19).
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For (OK) = (, Ke ) in e during a small timestep at where *e is an assumed

linear trial function for 0 in ne, (28) simplifies to the Galerkin finite

element statement

,e dLf
0 - R :U dR + S R4eL dR (29)

AR dR at

where

Ke

S =e(e+ - e)/(re+1  re )  (30)

Integrating (29) determines the Galerkin finite element matrix system for

the approximation of (1) on ne

Se *e + pe( 2 );e + Q,(2) e (0} (31)

where

se K rI
Se r e+ r eI1 (32)

Pe(2) (33)

6 1 2

s(te)
2  v 1

Qe(2) -- 3 ).,.

12 1 3j

and where e (r . re); and (,e, ;e) are vectors of the nodal values and-.

e+1 e- -

time derivative ,..F nodal values of finite element e.

..
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Subdomain Intearation

A cover of finite element ne is given by the union of nodal domains

;, J cS e . The subdomain integration version of the weighted residuals process

approximates (1) in each subdomain Rj by

f 0 W dR 0 (35)

where (1 RcR (36)

0 , otherwise

But

D - * dR + , dR (37)

Rj

Thus a finite element matrix system is qenerated by the subdomain integration

method for finite element ie by

1 P dR {0, j Se (38)
e%

From (25),

'aI D fdRl~ RK- RS -dR i E~S (39) -

A at .e.
e e e D I

r e r e
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Using (K,O) -(K, S)

o RdR Ke a -S- Roe dR J eSe (40)

j j

Integrating (40) gives the finite element statement of a subdomain Integration

approximation of (1) on finite element ne

S ee + pe (3) $e + Qe(3)je (0) (41)

where Se is given by the Galerkin element matrix of (32), and

3 1].

pe( 3) Se (42)8 1 3

S(Xe) L 2 1Q e(3) 1](43)

24 2 %

and where vectors (,e';e) are as defined previously.

From (40), the global finite element matrix system determined by the

appropriate summation of each se matrix system satisfies Dirichlet and Neumann

boundary conditions in a manner similar to the global Galerkin matrix system.

Additionally, the capability of representing an inhomogeneous medium by

specifyinq different parameters in each finite element Qe is similar to the

usual Galerkin finite element approach, although from (40) the conduction

parameters are necessarily evaluated at the midpoint of the finite element --

and capacitance parameters need to represent a mean value in the control

volume associated to the particular nodal point. These advantages normally

associated to the Galerkin finite element approach can also be developed for

an integrated finite-difference numerical analog for the approximation of (1)

on ne. Z..:
on 115
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Integrated Finite Difference

The integrated finite-difference approach (Spalding, 1972) can be extended

to the solution of (1) on appropriately defined control volumes. The usual

control volume definition, however, is identical tb the subdomain definition

cover Ri of global domain n given by (21). Thus, an integrated finite-

difference approximation for solution of (1) on e where the trial function #e

is assumed to be linear in each ne is given by

{(K } R e dR j ES e  (44)R St I Ip

rJ-r r ,

But the integrated finite-difference approach equates

Je dR E*,O dR (45)

,e

Thus, the finite element matrix system is given by

Se .e + pe(_) ;e + oe(_) ;e (0} (46)
. . . .. . ,.."

where Se is once more given by (32); and "..

1 0 (47) :"

) 0 -I

oe (4w) -(~e2 r(48)
18 0 3-
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From (40), the global finite element matrix system determined by the

appropriate sumaton of each fIe matrix system of (46) satisfies Neumann and

Dirichlet boundary conditions in a manner generally associated with the Galerkin

approach. Additionally, anisotropic inhomogeneous mediums are similarly

acconmodated as with a Galerkin or a subdomain integration analog previously

derived.

Due to the similarity of the three numerical approximations, a single

element matrix system for the approximation of (1) on ne can be written by

Se e + pe(n) ;e + Qe(n) ;e {0) (49)

e

where S is given by (32); and

Sete (50)
S 2(n+I) I n

S(je) 2  (n2 - 2n +3) 3
4(2n'-n+3) -(3n-3) (3n' - 3n + 3)]

The Galerkin finite element, subdomain integration, and integrated finite-

difference numerical analogs of (31), (41), and (46) are given by (49) for

n (2,3,-) resoectively.

Extension of the NOI technique to cylindrical coordinates follows

directly from (32), (50) and (51). The extension to spherical coordinates

follows from the tetrahedron finite element determination (Hromadka and Guymon,

1983b) and the above results.

11.
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A.4 NDI MOOEL ANALYSIS

The previous section unified several numerical techniques into a

single finite element matrix system as a function of the degree of mass

lumping, n. The question remains whether an optimum n factor exists such that

the modeling integrated relative error is a minimum.

In this work, the n factor developed for one-dimensional diffusion

problems (Hromadka and Guymon, 1983b) is used to test the NDI model accuracy

for radial problems where analytical solutions exist. This technique is based

on the Fourier series expansion of a particular solution to the one-dimensional

diffusion equation in a small hamooeneous control volume. That is, the radial

geometric contributions are neglected in the development of n.

For a control volume Ri. the usual process of normalization reduces the

one-dimensional diffusion equation to

ale 36

- = - , x E (0,1] (52)
3x 2  3t

where a is a normalized variable for *. and variables x,t are now defined as

normalized space and time. It is assumed in (52) that 6(xzO) = - 0

e(x=.5) = ej, and O(x-1) - a where ek are normalized nodal values.

Using the Crank-Nicolson midtimestep advancement procedure to approxi-

mate the time derivative, the nodal equation for solution of e is

at Je+1 . i+i .i+ll-2 e+ .

2IRJ .+2e *j+lj + - 2. + 6'+,]

(53)

2(A1 3- • j - (1+1 i.
2(n +1) j-1 118
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where the normalized length, J ; i is the timestep number; and nj is

constant during normalized timestep at. Equation (53) evaluates all modeled

flux term at the midttmstep. For other tim derivative approximations such

as forward or backward step differencing, a similar difference statement can

be developed. A solution of (52) using (53) at the midtlmestp is

e~x~cJ 1 - 2;j + 4j1 sin irxew~c

(54) I.

+ weJ+l + ij-11 x + ;J-1

whee c is noalized time asured from the midtimestep; and where

1 0' + 9'+']. If it is assumed that all effects of a moving boundary value
j j~

at the endpoints is equivalent to holding 8 constant at the midtimestep boundary

values, then (54) represents an exact solution to the assumed boundary value

problem.

Holding the boundary values of e constant at the midtimestep allows a

simplification of the NDT nodal equation to

+ .. j .0 (55)

e+1 "e- " "

Solving for e and 8 gives

(56a)

i.+j 1 A .t - 2ej e-&/ + e-
i'T T (1 _1. j+ + 5 b
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Cmblning (56ab) and (55) gives nj as a function of the model timstep size

by

nj(At) I e-wzat - 4 t(le ) (57)1'e1 z~ - J 4t)

where the normlized timestep at is related to the global model timestep at*

by
at* "

at (58)
4DllRjII 2

where D is the man diffusivity (D - K/S) for R.
From (57), the mass lumping fector lies within the range

8/(wZ -8) S nj(at) < (59) "3

and is seen to be a function of titmestep and element size. '-

To test the success of the n(At) selection technique, several radially

symmetric heat transfer (diffusion) problem where analytic solutions are known •_

were modeled. Additionally, the derived n factors of 2,3, and - were also

tested for comparison purposes. The measure of accuracy used is a for of the

L2 norm of the error given by

E - (0- ^) d ds (60)

where is the test problem solution; * is the approximation value; and E is

the error of approximation.
0,.
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In this study. six different boundary value problem of the heat flow

equation were tested with various values of the timastep (Crank-Nicolson

method) and finite element size. For each test, nodal values are reset to the

exact nodal values after each timastep advancement in order to better test the

approximation error in satisfying the flow equation rather than measuring the

accumulation of approximation error. After each timestep, the E error is
J-.

evaluated and stored for the four considered n factor approaches, and the factor "-

which resulted in the minimum E value (a success) is noted. Consequently, more

than 150 test problem (5 timesteps and 5 element spacings for each boundary -,

value problem) resulted in an excess of 20,000 timstep advancemnts. By

dividing the nuber of successes by the total nuber of timestep advancements,

a probability of success for a n factor is estimated. Figure 3 shows the success

probability for the n(At) approach as a function of normalized timestep size and

element size.

A.5 CONCLUSIONS

1. A unifying numerical model can be developed for radially symtric heat

conduction problems. The unifying model is based on the straight forward

nodal domain inteqration method. The resulting model is found to have

the capability of representing the Galerkin finite element, subdomain

integration, and integrated finite difference methods by the specification

of a single mass matrix lumping factor, n,.

2. The global matrix system composed of the sum of all NDI elements accom-

modates Dirichlet, Neumann, and mixed boundary conditions without the need

for special finite differencing equations.

3. An infinity of possible domain numerical methods are possible, and can be

represented by the NDI model for specific values of n.

j a . A .
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4. A computer cods based on the ralerkin finite element method can easily be

mofied to allow a variable mss lumed matrix system and, consequently,

represent an integrated finite difference, subdmain integration, and an
infinity of other domain mthods.

S. An improved mass lumping factor exists (as a function of timestep and

finite element size) which minimizes approximation error more often than

any of the other considered domain methods. The probability of the pro-

posed optimum mass lumping system being the best numerical method is

approximately 70 percent for the normalized timtep sizes considered.

The improved method is developed based on a linear trial function model

and a Crank Nicolson time advancemnt approximation. Although only the

radially symmetric problem is developed the extension of the approach to

cylindrical and spherical coordinate problems is straightforward.
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